Climate Data Management
Jysem

Verson 5.0

Robert Drach, Paul Dubois, Dean Williams

Program for Climate Model Diagnosis and
Intercomparison

Lawrence Livermore National Laboratory

October 2007

UCRL-JC-134897

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of Californianor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or precess
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
congtitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

Table of Contents

CHAPTER 1 Introduction 9

Overview 9

Variables 9

Filel/O 10

Coordinate Axes 11

Attributes 13

Masked values 13

File Variables 14

Dataset Variables 17

Grids 17
Example: a curvilinear grid 18
Example: ageneric grid 19

Regridding 22
CDMSRegridder 22
SCRIP Regridder 22

Timetypes 24

Plotting data 25

Databases 26

CHAPTER 2

CDMS Python Application
Programming Interface 27

Overview 27
Python types used in CDMS 28
A first example 29
cdms2 module 31
cdms2 module functions 31
Class Tags 39
CdmsObj 40

Attributes common to all CDMS objects 40
Getting and setting attributes 40

CoordinateAxis 41
CoordinateAxis types 41
CoordinateAxis Internal Attributes 42
Axis Constructors 42
CoordinateAxis Methods 44
Axis Methods, additional to CoordinateAxis methods 48
Axis Sice Operators 51

CdmsFile 52
CdmsFile Internal Attributes 52
CdmsFile Constructors 53
CdmsFile Methods 53
CDMS Datatypes 58

Database 58
Overview 59
Database Internal Attributes 60
Database Constructors 61
Database Methods 61
Searching a database 64
SearchResult Methods 66
ResultEntry Attributes 67
ResultEntry Methods 67
Accessing data 67
Examples of database searches 68

Dataset 69
Dataset Internal Attributes 69
Dataset Constructors 70
Open Modes 70
Dataset Methods 71

MV2 module 73
Variable Constructors in module MV2 74
MV2 functions 76

HorizontalGrid 79
79
RectGrid Constructors 80
HorizontalGrid Internal Attributes 80
HorizontalGrid Methods 81
RectGrid Methods, additional to Horizontal Grid Methods 85

Variable 87
Variable Internal Attributes 88
Variable Constructors 90

Variable Methods 92

Variable Sice Operators 101

Index and Coordinate Intervals 101
Selectors 102

Selector keywords 103

Selector examples 105

Examples 106
CHAPTER 3 cdtime Module 111
Timetypes 111
Cdendars 112
Time Constructors 112
Time Constructors 113
Relative Time 114
Relative Time Members 114

Component Time 115

Component Time Members 115
Time Methods 115

Time Methods 116

CHAPTER 4 Regridding Data 119

Overview 119
CDMShorizontal regridder 119
CRIP horizontal regridder 121
Pressure-level regridder 124
Cross-section regridder 124

regrid2 module 125
CDMShorizontal regridder 125
CDMS Regridder Constructor 125
SCRIP Regridder 125
CRIP Regridder Constructor 126

regridder functions 126
CDMSregridder functions 126
CDMS Regridder function 129
SCRIP Regridder functions 130

SCRIP Regridder functions 131
Examples 133

CDMSregridder 133

SCRIP regridder 137

CHAPTER 5 Plotting CDMSdata in Python 139

Overview 139

Examples 139
Example: plotting a gridded variable 139
Example: using plot keywords. 140
Example: plotting a time-latitude slice 141
Example: plotting subsetted data 141

plot method 142

plot keywords 143
CHAPTER 6 Climate Data Markup Language
(CDML) 147
Introduction 147
Elements 148
CDML Tags 148

Specia Characters 149
Soecial Character Encodings 149

Identifiers 150
CF Metadata Standard 150

CDML Syntax 150

Dataset Element 151
Dataset Attributes 151
AxisElement 153
Axis Attributes 154
partition attribute 156
Grid Element 157
RectGrid Attributes 157
Variable Element 157
Variable Attributes 158

Attribute Element 160
A Sample CDML Document 160

CHAPTER 7 CDMS Utilities 163

cdscan: Importing datasetsinto COMS 163
Overview 163
cdscan Syntax 164
cdscan command options 165
Examples 170
File Formats 170
Name Aliasing 170

APPENDIX A CDMSClasses 173

APPENDIX B \ersion Notes 176

Version5.0 176

Version4.0 176

Version 3.0 Overview 177

V3.0 Details 178
AbstractVariable 178
AbstractAxis 178
AbstractDatabase 178
Dataset 178
cdmsmodule 179
CdmsFile 179
CDMSError 179
AbstractRectGrid 179
Internal Attributes 179
TransientVariable 179
MV 179

APPENDIX C cu Module 180

Slab 180
Yab Methods 181

cuDataset 182
cuDataset Methods 182

APPENDIX D Version 5 Transition Guide 186

Namespace changes 186
187

Converting scripts with convertcdms.py 187
189

CHAPTER 1

|ntroduction

1.1 Overview

The Climate Data Management System is an object-oriented data
management system, specialized for organizing multidimensional, gridded
data used in climate analysis and simulation.

CDMS isimplemented as part of the Climate Data Analysis Tools (CDAT),
written in Python. The examplesin this chapter assume some familiarity
with the language and the Python NumPy module (http://numpy.scipy.org).
A number of excellent tutorials on Python are available in books or on the
Internet. For example, see http://python.org .

1.2 Variables

The basic unit of computation in CDMSisthe variable. A variableis
essentially amultidimensional data array, augmented with adomain, a set of
attributes, and optionally a spatial and/or temporal coordinate system (see
“Coordinate Axes’ on page 11). Since avariableisadataarray, it can be
sliced to obtain a portion of the data, and can be used in arithmetic computa-

Climate Data Management System 9

Introduction

tions. For example, if u and v are variables representing the eastward and
northward components of wind speed, respectively, and both variables are
functions of time, latitude, and longitude, then the velocity for time O (first
index) can be calculated as

>>> from cdns2 inport W
>>> vel = M.sqrt(u[0]**2 + v[0]**2)

Thisillustrates that:

e Square brackets represent the slice operator. Indexing startsat 0, sou[0] selects
from variable u for the first timepoint. The result of this slice operationis
another variable. The slice operator can be multidimensional, and follows the
syntax of NumPy arrays. In this example, u[0: 10, :, 1] would retrieve datafor
the first ten timepoints, at all latitudes, for the second longitude.

e Variables can be used in computation. ‘**’ isthe Python exponentiation opera-
tor.

¢ Arithmetic functions are defined in the cdms2.MV module.

e Operations on variables carry along the corresponding metadata where applica-
ble. In the above example, vel has the same latitude and longitude coordinates
asu and v, and the time coordinate is the first time of u and v.

1.3 Filel/O

A variable can be obtained from afile or collection of files, or can be gener-
ated asthe result of acomputation. Files can bein any of the self-describing
formats netCDF, HDF, GrADS/GRIB (GRIB with a GrADS control file), or
PCMDI DRS. (HDF and DRS support is optional, and is configured at the
time CDAT isingtalled.) Thereis also support for UK Met Office PP for-
mat. For instance, to read data from file sanpl e. nc into variable u:

>>> jmport cdns2 as cdns

>>> f = cdns. open(’ sanple.nc’)
>>>u = f('u)

Data can be read by index or by world coordinate values. The following
reads the n-th timepoint of u (the syntax st i ce(i,j) referstoindicesk such
that i <=k <j):

10

Climate Data Management System

Coordinate Axes

>>> u0 = f('u ,tine=slice(n, n+l))

To read u at time 366.0:

>>> ul = f('u',tine=366.)

A variable can be written to a file with the write function:

>>> g = cdns2. open(’ sanple2.nc’,’w)

>>> g.wite(u)

<Variable: u, file: sanple2.nc, shape: (1, 16, 32)>
>>> g.cl ose()

1.4 Coordinate Axes

A coordinate axisis avariable that represents coordinate information. Typi-
cally an axisis associated with one or more variablesin afile or dataset, to
represent the indexing and/or spatiotemporal coordinate system(s) of the
variable(s).

Often in climate applications an axis is a one-dimensional variable whose
values are floating-point and strictly monotonic. In some cases an axis can
be multidimensional (see“Grids’ on page 17). If an axisis associated with
one of the canonical types latitude, longitude, level, or time, then the axisis
called spatiotemporal.

The shape and physical ordering of avariable is represented by the vari-
able’'s domain, an ordered tuple of one-dimensional axes. In the previous
example, the domain of the variable u isthe tuple (time, latitude, longitude).
Thisindicates the order of the dimensions, with the slowest-varying dimen-
sion listed first (time). The domain may be accessed with the getAxisList
method:

>>> s, get Axi sLi st ()

[id: lat
Designated a | atitude axis.
units: degrees_north
Length: 64
First: -87.8637970305
Last: 87.8637970305
Ot her axis attributes:

Climate Data Management System 11

Introduction

In the above example, the domain elements are axes that are also spatiotem-
poral. In general it is not always the case that an element of adomainis spa-

I ong_nane: |atitude

axis: Y
Python id: 833efa4d
id: lon

Desi gnated a | ongitude axis
units: degrees_east
Length: 128
First: 0.0
Last: 357. 1875
Ot her axis attributes:
modul o: 360.0
topol ogy: circular
| ong_nane: | ongitude
axis: X
Python id: 833f174

tiotemporal:

As previously noted, a spatial and/or temporal coordinate system may be
associated with a variable. The methods getL atitude, getL ongitude,
getL evel, and getTime return the associated coordinate axes. For example:

An axisin the domain of a variable need not be spatiotemporal. For example, it
may represent arange of indices, an index coordinate system.

The latitude and/or longitude coordinate axes associated with a variable need
not be elements of the domain. In particular thiswill be true if the variableis
defined on a non-rectangular grid (see “ Grids’ on page 17).

>>>t = u.getTinme()
>>> print t[:]

0., 366., 731.,]

>>> print t.units
‘days since 2000-1-1’

12

Climate Data Management System

Attributes

1.5 Attributes

As mentioned above, variables can have associated attributes, name-value
pairs. Infact, nearly all CDM S objects can have associated attributes, which
are accessed using the Python dot notation:

>>> u.units="ms’

>>> print u.units
nms

Attribute values can be strings, scalars, or 1-D NumPy arrays.

When avariable is written to afile, not all the attributes are written. Some
attributes, called internal attributes, are used for bookkeeping, and are not
intended to be part of the external file representation of the variable. In con-
trast, external attributes are written to an output file along with the variable.
By default, when an attribute is set, it is treated as external. Every variable
has afield attributes, a Python dictionary that defines the external
attributes:

>>> print u.attributes. keys()
['datatype’, 'nane’, 'missing_value', 'units’]

The Python dir command lists the internal attribute names:

>>> dir(u)
[' _MaskedArray__data’, '_MaskedArray_ fill_value, ..., "id
"parent’]

In general internal attributes should not be modified directly. One exception
istheid attribute, the name of the variable. It isused in plotting and 1/0, and
can be set directly.

1.6 Masked values

Optionally, variables have amask that represents where data are miss-
ing. If present, the mask is an array of ones and zeros having the shape of
the data array. A mask value of oneindicates that the corresponding data
array element ismissing or invalid.

Climate Data Management System 13

Introduction

Arithmetic operationsin CDM S take missing datainto account. The sameis
true of the functions defined in the cdms2.MV module. For example:

>>> a = W.array([1,2,3]) # Create array a, with no nmask
>>> b = W.array([4,5,6]) # Sane for b

>>> a+b

variable_13

array([5,7,9,])

>>> a[1] =W. masked # Mask the second val ue of a
>>> a. mask # View the mask
array([Fal se, True, False], dtype=bool)

>>> a+b

variable_4

array(data =

[5 999999 9],
mask =

[Fal se True Fal se],
fill_val ue=999999)

When datais read from afile, the result variable is masked if the file vari-
able has amissing_value attribute. The mask is set to one for those ele-
ments equal to the missing value, zero elsewhere. If no such attribute is
present in the file, the result variable is not masked.

When avariable with masked values is written to afile, data values with a
corresponding mask value of one are set to the value of the variable's
missing_value attribute. The data and missing_value attribute are then
written to thefile.

Masking is covered in Section 2.9. See also the documentation of the
Python NumPy and ma modules, on which cdms2.MV is based, at http://
numpy.scipy.org .

1.7 FileVariables

A variable can be obtained either from afile, acollection of files, or asthe
result of computation. Consequently there are three types of variablesin
CDMS:

14

Climate Data Management System

File Variables

A filevariable is a variable associated with a single data file. Setting or refer-
encing afile variable generates 1/O operations.

A dataset variable is avariable associated with a collection of files. Referenc-
ing the dataset variable reads data, possibly from multiple files. Dataset vari-
ables are read-only.

A transient variable isan ‘in-memory’ object not associated with afile or
dataset. Transient variables result from a computation or 1/O operation.

A file variable may be used to inquire information about the variablein a
file without actually reading array data. A file variableis obtained by apply-
ing the slice operator [] to afile, passing the name of the variable, or by call-
ing the getVariable function. Note that obtaining afile variable does not
actually read the data array:

>>> f = cdnms2. open(’ sanple.nc’,’r+")

>>> y = f.getVariable('u’) # or u=f['u']
>>> u. shape
(3, 16, 32)

File variables are also useful for fine-grained 1/0. They behave like tran-
sient variables, but operations on them also affect the associated file. Spe-
cificaly:

slicing afile variable reads data,

setting a slice writes data,

referencing an attribute reads the attribute,

setting an attribute writes the attribute,

and calling afile variable like afunction reads data associated with the variable:

>>> f = cdnms2. open(’ sanple.nc’,’'r+") # Open read/wite
>>> uvar = f['u’] # Note square brackets

>>> uvar. shape

(3, 16, 32)

>>> u0 = uvar[0] # Reads data from sanpl e. nc

>>> u0. shape

(16, 32)

>>> uvar[1] =u0 # Wites data to sanple.nc

>>> uvar.units # Reads the attribute

‘n's’

>>> yvar. units="neters/second” # Wites the attribute
Calling a variable like a function reads data

>>> u24 = uvar(tine=24.0)

Climate Data Management System 15

Introduction

>>> f. cl ose() # Save changes to sanple.nc (1/0O may be buffered)

When atransient variable is printed, the datais truncated if the size of the
array is greater than the print limit. This value can be set with the function

MV.set_print_limit to force al the datato be printed:

>>> smal | var. si ze # Nunmber of el enents
20

>>> W.get_print_limt() # Current limt

300

>>> smal | var

smal | variable

array/(

[o, 1., 2., 3.,]
[4., 5., 6., 7.,]
[8., 9., 10., 11.,]
[12., 13., 14., 15.,]
[16., 17., 18., 19.,]])

>>> | argevar. si ze

400

>>> | argevar

| arge variabl e

array(

array (20,20) , type = d, has 400 el enents)

>>> MW.set_print_limt(500) # Reset the print limt
>>> | argevar
| arge variabl e
array(
[0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,]
-1

The datatype of the variable is determined with the dtype attribute or from

the typecode function (for compatibility with Version 4):

>>> x. dt ype. char
-t
>>> x.typecode()
Cdr

16

Climate Data Management System

Dataset Variables

1.8 Dataset Variables

Thethird type of variable, a dataset variable, is associated with a dataset,
an aggregation of filestreated asasinglefile. A dataset is created with the
cdscan utility. This generates an XML metafile that describes how the files
are organized and what metadata are contained in thefiles. In aclimate sim-
ulation application, a dataset typically represents the data generated by one
run of agenera circulation or coupled ocean-atmosphere model.

For example, suppose datafor variablesu and v are stored in six files:
u_2000. nc, u_2001. nc, u_2002.nc, v_2000.nc, v_2001.nc, and v_2002. nc. A
metafile can be generated with the command:

% cdscan -x cdsanple.xm [uv]*.nc

The metafile cdsanpl e. xm isthen used like an ordinary datafile:

>>> f = cdns2. open(’ cdsanpl e.xm ")
>>>u = f('u)

>>> u. shape

(3, 16, 32)

1.9 Grids

A latitude-longitude grid represents the coordinate information associated
with avariable. A grid encapsulates:

¢ |atitude, longitude coordinates

e grid cell boundaries

e areaweights

CDMS defines arich set of grid types to represent the variety of coordinate
systems used in climate model applications. Grids can be categorized as
rectangular or nonrectangular.

e A rectangular grid has latitude and longitude axes that are one-dimensional,
with strictly monotonic values. The grid is essentially the Cartesian product of
the axes. If either criterion is not met, the grid is nonrectangular.

Climate Data Management System 17

Introduction

CDMSS supports two types of nonrectangular grid:

A curvilinear grid consists of alatitude and longitude axis, each of whichisa
two-dimensional coordinate axis. Curvilinear grids are often used in ocean
model applications.

A generic grid consists of alatitude and longitude axis, each of which isan aux-
iliary one-dimensional coordinate axis. An auxiliary axis has values that are not
necessarily monotonic. As the name suggests, generic grids can represent virtu-
ally any type of grid. However, it is more difficult to determine adjacency rela-

tionships between grid points.

191 Example: acurvilinear grid
In this example, variable sanpl e is defined on a 128x192 curvilinear

grid. Note that:

The domain of variablesanpl e is (y,x) wherey and x are index coordinate axes.

The curvilinear grid associated with sanpl e consists of axes (I at , | on), each a
two-dimensional coordinate axis.

I at and I on each have domain (y,x)
>>> f = cdns2. open(' sanpl eCurveGid.nc')

lat and lon are coordinate axes, but are grouped
with data variabl es

>>> f . variabl es. keys()

['lat', 'sanple', 'bounds_lon', '"lon', 'bounds_lat']

y and x are index coordi nate axes
>>> f . axes. keys()
["y', "X, '"nvert']

Read data for variable sanple
>>> sanple = f('sanple')

The associated grid g is curvilinear

>>> g = sanple.getGid()

>>> g

<TransientCurveGid, id: grid_1, shape: (128, 192)>

The donmmin of the variable consists of index axes
>>> sanpl e. get Axi sl ds()
[y, 'x']

CGet the coordinate axes associated with the grid

18

Climate Data Management System

Grids

>>> | at
>>> | on

= g.getlLatitude() # or sanple.getlLatitude()

= g.getlLongitude() # or sanple.getLongitude()
lat and |l on have the same domain, a subset of

the domain of ‘sanple’

>>> | at. get Axi sl ds()

[y, x]

lat and lon are variables ...
>>> | at. shape
(128, 192)
>>> | at
| at
array(
array (128,192) , type = d, has 24576 el enents)

... so can be used in computation
>>> | at_in_radians = | at*nunpy. pi/180.0
>>>

(5] LN VI

M wnD

L
=
B
2a]
& ,
]
] il
il -+
] | A

pl] |
Ly il g
£ - i
s R -ll"_||—\-|—_ll_' 1 —
Sy]]

.._J—I--J_..'_' —-+ T
LJ—|_L_'I_|__|| T - -|—J_|_|__._ :
I T T R P R T SR

FIGURE 1. Curvilinear grid

19.2 Example agenericgrid

In thisexample variable zs is defined on ageneric grid. Figure 2 illus-

tratesthe grid, in this case a‘geodesic’ grid.

Climate Data Management System

19

Introduction

>>> f . variabl es. keys()

["lat', "bounds_lon', '"lon', 'zs', 'bounds_lat']
>>> f . axes. keys()
['cell", "nvert']

>>> zs = f('zs')

>>> g = zs.getGid()

>>> g

<Transi entGenericGid, id: grid_1, shape: (2562,)>
>>> | at = g.getlatitude()

>>> | on = g.getLongitude()

>>> | at. shape

(2562,)

>>> | on. shape

(2562,)

variable zs is defined in terns of a single index coordinate
axis, ‘cell
>>> zs. shape

(2562,)

>>> zs. get Axi sl ds()

['cell"]

lat and lon are also defined in ternms of the ‘cell’ axis
>>> | at. get Axi sl ds()

['cell"]

lat and lon are one-dinmensional, ‘auxiliary’ coordinate
axes: values are not npbnotonic

>>> |lat.__class__

20

Climate Data Management System

Grids

<cl ass cdns2. auxcoord. Transi ent AuxAxi s1D at 0x82eea24>

FIGURE 2. Generic grid

Generic grids can be used to represent any of the grid types. The method
toGenericGrid can be applied to any grid to convert it to a generic repre-
sentation. Similarly, arectangular grid can be represented as curvilinear.
The method toCurveGrid is used to convert a non-generic grid to curvilin-
ear representation:

>>> jnport cdns2 as cdns

>>> f = cdns.open('clt.nc")

>>> clt = f('clt')

>>> rectgrid = clt.getGid()

>>> rectgrid. shape

(46, 72)

>>> curvegrid = rectgrid.toCurveGid()

>>> curvegrid

<TransientCurveGid, id: grid_1, shape: (46, 72)>
>>> genericgrid = curvegrid.toGenericGid()

>>> genericgrid

<TransientGenericGid, id: grid_1, shape: (3312,)>
>>>

Climate Data Management System 21

Introduction

1.10 Regridding

Regridding is the process of mapping variables from one grid to
another. CDM S supports two forms of regridding. Which one you use
depends on the class of grids being transformed:

¢ To interpolate from one rectangular grid to another, use the built-in CDMS
regridder. CDM S al so has built-in regridders to interpolate from one set of pres-
sure levels to another, or from one vertical cross-section to another.

¢ Tointerpolate from any lat-lon grid, rectangular or non-rectangular, use the
SCRIP regridder.

1.10.1 CDMSRegridder

The built-in CDMS regridder is used to transform data from one rect-
angular grid to another. For example, to regrid variable u (from arectangu-
lar grid) to a 96x192 rectangular Gaussian grid:

>>>u = f('u)

>>> u. shape

(3, 16, 32)

>>> t63_grid = cdns2. creat eGaussi anG i d(96)
>>> u63 = u.regrid(t63_grid)

>>> u63. shape

(3, 96, 192)

To regrid avariable uol d to the same grid as variable vnew:

>>> uol d. shape

(3, 16, 32)

>>> vnew. shape

(3, 96, 192)

>>> t63_grid = vnew.getGid() # Cbtain the grid for vnew
>>> u63 = u.regrid(t63_grid)

>>> u63. shape

(3, 96, 192)

1.10.2 SCRIP Regridder

To interpolate between any lat-lon grid types, the SCRIP regridder
may be used. The SCRIP package was developed at L os Alamos National
Laboratory (http://climate.lanl.gov/Software/SCRIP/). SCRIP is written in

22 Climate Data Management System

Regridding

Fortran 90, and must be built and installed separately from the CDAT/
CDMS installation.

The stepsto regrid avariable are:

(externa to CDMYS)

1. Obtain or generate the grids, in SCRIP netCDF format.
2. Run SCRIP to generate aremapping file.

(in CDMS)

3. Read the regridder from the SCRIP remapping file.
4. Cadll the regridder with the source data, returning data on the target grid.

Steps 1 and 2 need only be done once. The regridder can be used as often
necessary.

For example, suppose the source dataon aT42 grid isto be mapped to a
POP curvilinear grid. Assume that SCRIP generated aremapping file
named ‘rmp_T42_to_POP43_conserv.nc':

Inport regrid2 package for regridder functions
i mport regrid2, cdns2 as cdns

Get the source variable

f = cdns. open(' sanpl eT42Gid. nc')
dat = f('src_array')

f.close()

Read the regridder fromthe remapper file
remapf = cdns. open(' rnp_T42_t o_POP43_conserv.nc')
regridf = regrid2.readRegri dder (remapf)
remapf . cl ose()

Regrid the source variable
popdat = regridf(dat)

Regridding is discussed in Chapter 4.

as

Climate Data Management System

23

Introduction

1.11 Time types

CDMS provides extensive support for time valuesin the cdtime mod-
ule. cdtime also defines a set of calendars, specifying the number of daysin
agiven month.

Two time types are avail able: relative time and component time. Relative
timeistimerelative to afixed base time. It consists of:

* aunits gtring, of theform “units since basetinme”, and

e afloating-point val ue

For example, the time “28.0 days since 1996-1-1" has value=2s. o, and
units="days since 1996-1-1". TO create arelative timetype:

>>> jnport cdtine

>>> rt = cdtinme.reltime(28.0, "days since 1996-1-1")
>>> rt

28.00 days since 1996-1-1

>>> rt.val ue

28.0

>>> rt.units

"days since 1996-1-1’

A component time consists of the integer fieldsyear, nonth, day, hour,
ni nut e, and the floating-point field second. For example:

>>> ct = cdtinme.conptine(1996, 2, 28, 12, 10, 30)
>>> ct

1996-2-28 12:10:30.0

>>> ct.year

1996

>>> ct.nonth

2

The conversion functions tocomp and torel convert between the two repre-
sentations. For instance, suppose that the time axis of avariableisrepre-
sented in units “days since 1979”. To find the coordinate value
corresponding to January 1, 1990:

>>> ct = cdtine.conptinme(1990, 1)

>>> rt = ct.torel ("days since 1979")

>>> rt.val ue
4018.0

24

Climate Data Management System

Plotting data

Time values can be used to specify intervals of time to read. The syntax
ti me=(c1, c2) specifiesthat data should be read for timest such that
cl<=t<=c2:

>>> cl cdtine. conpti me(1990, 1)
>>> c2 cdtine. conptime(1991, 1)
>>> uya = f['ua’]

>>> ua. shape

(480, 17, 73, 144)

>>> x = ua. subRegion(tine=(cl,c2))
>>> x. shape

(12, 17, 73, 144)

or string representations can be used:

>>> X = ua.subRegion(tinme=(’'1990-1",'1991-1"))

Time types are described in Chapter 3.

1.12 Plotting data

Dataread viathe CDM S Python interface can be plotted using the vcs
module. This module, part of the Climate Data Analysis Tool (CDAT) is
documented in the VCS reference manual. The ves module provides access
to the functionality of the V CS visualization program.

To generate aplot:

¢ Initialize a canvas with the vcsinit routine.
* Plot the data using the canvas plot routine.

For example:

>>> jnport cdms2 as cdns, vcs

>>> f = cdns. open(’ sanple.nc’)

>>> f['tine'][:] # Print the tinme coordinates

[o0, 6., 12., 18., 24., 30., 36., 42., 48., 54., 60., 66., 72.
78., 84., 90.,]

>>> precip = f('prc’, tine=24.0) # Read precip data

>>> precip. shape

(1, 32, 64)

>>> w = ves.init() # Initialize a canvas

"Tenmplate’ is currently set to P_default

Climate Data Management System 25

Introduction

G aphics nmethod "Boxfill’ is currently set to Gb_default.
>>> w. pl ot (precip) # Generate a plot
(generates a boxfill plot)

By default for rectangular grids, a boxfill plot of the lat-lon diceis pro-
duced. Since variable pr eci p includes information on time, latitude, and
longitude, the continental outlines and time information are also plotted. If
the variable were on a non-rectangular grid, the plot would be a ‘ meshfill’
plot.

The plot routine has a number of options for producing different types of
plots, such asisofill and x-y plots. See Chapter 5 for details.

1.13 Databases

Datasets can be aggregated together into hierarchical collections,
called databases. In typical usage, a program:
* connects to a database
* searchesfor data
e opens adataset
* accesses data

Databases add the ability to search for data and metadatain a distributed
computing environment. At present CDM S supports one particular type of
database, based on the Lightweight Directory Access Protocol (LDAP).

Here is an example of accessing data via a database:

>>> db = cdns2.connect () # Connect to the default database.

>>> f = db. open(’ ncep_reanalysis_np’) # Open a dataset.

>>> f . variabl es. keys() # List the variables in the dataset.

["ua’, 'evs', 'cvvta', 'tauv’', 'wap’', 'cvwhusa', 'rss’, 'rls’, ...
‘prc’, 'ts’', 'va']

Databases are discussed further in Section 2.7.

26

Climate Data Management System

CHAPTER 2

CDMSPython
Application
Programming Interface

2.1 Overview

This chapter describes the CDM S Python application programming
interface (API). Python is a popular public-domain, object-oriented lan-
guage. Its features include support for object-oriented development, arich
set of programming constructs, and an extensible architecture. CDM S itself
isimplemented in amixture of C and Python. In this chapter the assumption
is made that the reader is familiar with the basic features of the Python lan-

guage.

Python supports the notion of a module, which groups together associated
classes and methods. Theimport command makes the module accessible to
an application. This chapter documents the cdms2, cdtime, and regrid2
modul es.

The chapter sections correspond to the CDMS classes. Each section
contains tables describing the classinternal (non-persistent) attributes, con-
structors (functionsfor creating an object), and class methods (functions). A
method can return an instance of a CDMS class, or one of the Python types:

Climate Data Management System 27

CDMS Python Application Programming Interface

Table 2.1 Python types used in CDMS

Type
ndarray,
M askedAr-

ray
Comptime

Dictionary

Float
I nteger
List

None
Reltime

Tuple

Description

NumPy or masked multidimensional data array. All ele-
ments of the array are of the same type. Defined in the
numpy and numpy.core.ma modules.

Absolute time value, a time with representation (year,
month, day, hour, minute, second). Defined in the
cdtime module. cf. reltime

An unordered collection of objects, indexed by key. All

dictionariesin CDM S are indexed by strings, e.qg.:
axes['time’]

Floating-point value.

Integer value.

An ordered sequence of objects, which need not be of
the same type. New members can be inserted or
appended. Lists are denoted with square brackets, e.g.,

[1, 2.0, 'x', 'y']
No value returned.
Relative time value, atime with representation (value,

“units since basetime”). Defined in the cdtime module.
cf. comptime

An ordered sequence of objects, which need not be of
the same type. Unlike lists, tuples elements cannot be
inserted or appended. Tuples are denoted with parenthe-
ses, eg.,

(1, 2.0, 'x', 'y")

28

Climate Data Management System

A first example

2.2 Afirst example

The following Python script reads January and July monthly tempera-
ture data from an input dataset, averages over time, and writes the results to
an output file. The input temperature data is ordered (time, latitude, longi-

tude).

0O~NO O WNER

PR RPRRPRRPRERRRERER
O oO~NOOUDWNREOO

Line

2,3

#!'/usr/bin/env python

i mport cdns2

fromcdns2 i nmport MW

jones = cdns2. open(’/pcndi/ cdns/ obs/jones_no.nc’)
tasvar = jones[’'tas’]

jans = tasvar[0::12]

julys = tasvar[6::12]

janavg = M. average(j ans)

janavg.id = "tas_jan"

j anavg. |l ong_nanme = "mean January surface tenperature"
julyavg = M. average(julys)

julyavg.id = "tas_jul"

julyavg.long_nanme = "mean July surface tenperature"”

out = cdms2.open(’janjuly.nc’,’w)

out.wite(janavg)

out.wite(julyavg)

out.comrent = "Average January/July from Jones dataset"
j ones. cl ose()

out. cl ose()

Notes

Makes the cdms2 and MV 2 modules available. MV 2 defines arith-
metic functions.

Opens a netCDF file read-only. Theresult j ones is a dataset object.

Gets the surface air temperature variable. ' t as’ isthe name of the
variable in the input dataset. This does not actually read the data.

Climate Data Management System 29

CDMS Python Application Programming Interface

Line

9,10

14

15

17

18

Notes

Read all January monthly mean datainto avariable ans. Variables
can be dliced like arrays. The dice operator [0: : 12] means ‘take
every 12th dice from dimension O, starting at index 0 and ending at
thelast index.’ If the stride 12 were omitted, it would default to 1.

Note that the variable is actually 3-dimensional. Since no slice is
specified for the second or third dimensions, all values of those
dimensions are retrieved. The slice operation could also have been
written[o:: 12, : , :].

Also note that the same script works for multi-file datasets. CDMS
opens the needed data files, extracts the appropriate dices, and con-
catenates them into the result array.

Reads all July datainto amasked array j ul ys.

Calculate the average January value for each grid zone. Any missing
datais handled automatically.

Set the variablei d and | ong_nane attributes. Theid is used asthe
name of the variable when plotted or written to afile.

Create a new netCDF output file named’ j anj ul y. nc’ to hold the
results.

Write the January average values to the output file. The variable will
haveid “tas_j an” in thefile.

wri t e isautility function which creates the variable in thefile, then
writes data to the variable. A more general method of data output is
first to create avariable, then set aslice of the variable.

Note that j anavg and j ul avg have the same | atitude and longitude
information ast asvar. It is carried along with the computations.

Set the global attribute’conment .

Close the output file.

30

Climate Data Management System

cdms2 module

2.3 cdms2 module

The cdms2 moduleisthe Python interfaceto CDMS. The objects and
methods in this chapter are made accessible with the command:

i mport cdns2

Version 5 of CDMS is based on the NumPy package. Previous versions
were based on the Numeric package, the predecessor to NumPy. In those
versions the modul e was named cdms. Although NumPy and Numeric are
quite similar, NumPy is a complete rewrite of Numeric. There are enough
differences in the structure and behavior of the packages that a change of
module name is warranted. Version 5 includes a utility that simplifies the
conversion of Numeric/M A/cdms scripts to run with numpy/ma/cdms2.
See the transition guide for details.

The functions described in this section are not associated with a class.
Rather, they are called as module functions, e.g.,

file = cdns2. open(’ sanple.nc’)

Table 2.2 cdms2 module functions

Type Definition

Variable asVariable(s)
Transform s into atransient variable.

sisamasked array (numpy.core.ma.MaskedArray), NumPy
ndarray, or Variable. If sisalready atransient variable, sis
returned.

See also: isVariable.

Climate Data Management System 31

CDMS Python Application Programming Interface

Table 2.2 cdms2 module functions

Type

AXis

Axis

AXxis

RectGrid

Definition
createAxis(data, bounds=None)

Create a one-dimensional coordinate Axis, which is not asso-
ciated with afile or dataset. Thisisuseful for creating agrid
which is not contained in afile or dataset.

data is aone-dimensional, monotonic NumPy array.

boundsis an array of shape (len(data),2), such that for all i,
datd[i] isin the range [boundd[i,0],boundg[i,1]]. If boundsis
not specified, the default boundaries are generated at the mid-
points between the consecutive data values, provided that the
autobounds mode is ‘on’ (the default). See setAutoBounds.

Also see: CdmsFile.createAxis

createEqual AreaAxis(nlat)

Create an equal-area latitude axis. The latitude values range
from north to south, and for all axis values x[i], sin(x[i])-
sin(x[i+1]) is constant.

nlat is the axis length.
The axisis not associated with afile or dataset.

createGaussianAxis(nlat)

Create a Gaussian latitude axis. Axis values range from north
to south.

nlat is the axis length.
The axisis not associated with afile or dataset.

createGaussianGrid(nlats, xorigin=0.0, order="yx")
Create a Gaussian grid, with shape (nlats, 2* nlats).

nlatsis the number of |atitudes.

xoriginisthe origin of the longitude axis.

order iseither “yx” (lat-lon, default) or “xy” (lon-lat)

32 Climate Data Management System

cdms2 module

Table 2.2 cdms2 module functions

Type Definition

RectGrid createGenericGrid(latArray, lonArray, lat-
Bounds=None, lonBounds=None, order="yx",
mask=None)

Create ageneric grid, that is, agrid which is not typed as
Gaussian, uniform, or equal-area. The grid is not associated
with afile or dataset.

latArray is a NumPy array of latitude val ues.
lonArray isa NumPy array of longitude values

latBoundsis a NumPy array having shape (Ien(latArray),2), of
| atitude boundaries.

lonBounds is a NumPy array having shape (Ilen(lonArray),2),
of longitude boundaries.

order is astring specifying the order of the axes, either “yx”
for (latitude, longitude), or “xy” for the reverse.

mask (optional) is an integer-valued NumPy mask array, hav-
ing the same shape and ordering as the grid.
RectGrid createGlobalM eanGrid(grid)

Generate a grid for calculating the global mean viaaregrid-
ding operation. The return grid is a single zone covering the
range of theinput grid.

gridis a RectGrid.

Climate Data Management System 33

CDMS Python Application Programming Interface

Table 2.2 cdms2 module functions

Type Definition
RectGrid createRectGrid(lat, lon, order, type="generic",
mask=None)

Create arectilinear grid, not associated with afile or dataset.
This might be used as the target grid for aregridding opera-
tion.

lat is alatitude axis, created by cdms2.createAxis.
lon isalongitude axis, created by cdms2.createAxis.

order isastring with value “yx” (thefirst grid dimension is
latitude) or “xy” (thefirst grid dimension is longitude).
typeisone of 'gaussian’,’uniform’,’ equalarea’ ,or ' generic’

If specified, mask is atwo-dimensional, logical NumPy array
(all values are zero or one) with the same shape as the grid.
This function creates aglobal grid. If the latitude bounds are

not specified with lat, they are assumed to extend from -90
degrees to 90 degrees.

Climate Data Management System

cdms2 module

Table 2.2 cdms2 module functions

Type Definition

RectGrid createUniformGrid(startL at, nlat, deltal at, start-
Lon, nlon, deltalL on, order="yx" , mask=None)

Create auniform rectilinear grid. The grid is not associated
with afile or dataset. The grid boundaries are at the midpoints
of the axis values.

startLat is the starting latitude value.

nlat is the number of latitudes. If nlat is 1, the grid latitude
boundaries will be startLat +/- deltalat/2.

deltalat is the increment between | atitudes.
startLon is the starting longitude value.

nlon is the number of longitudes. If nlonis 1, the grid longi-
tude boundaries will be startLon +/- deltal on/2.

deltal on isthe increment between longitudes.

order isastring with value “yx” (thefirst grid dimensionis
latitude) or “xy” (thefirst grid dimension is longitude).

If specified, mask is atwo-dimensional, logical NumPy array
(all values are zero or one) with the same shape as the grid.
Axis createUniformL atitudeAxis(startL at, nlat, deltal at)

Create auniform latitude axis. The axis boundaries are at the
midpoints of the axis values. The axisis designated as a circu-
lar latitude axis.

startLat is the starting latitude value.
nlat is the number of latitudes.
deltalat is the increment between | atitudes.

RectGrid createZonalGrid(grid)

Create azonal grid. The output grid has the same latitude as
the input grid, and a single longitude. This may be used to cal-
culate zonal averages via a regridding operation.

gridis a RectGrid.

Climate Data Management System 35

CDMS Python Application Programming Interface

Table 2.2 cdms2 module functions

Type Definition
AXis createUnifor mL ongitudeAxis(startL on, nlon, delta-
Lon)

Create auniform longitude axis. The axis boundaries are at the
midpoints of the axis values. The axisis designated as a circu-
lar longitude axis.

startLon is the starting longitude value.
nlon is the number of longitudes.
deltal onisthe increment between longitudes.

Variable createVariable(array, typecode=None, copy=0,
savespace=0, mask=None, fill_value=None,
grid=None, axes=None, attributes=None,
id=None)

This function is documented in Table 2.34 on page 90.

Integer getAutoBounds()
Get the current autobounds mode. Returns 0, 1, or 2. See set-
AutoBounds.

Boolean getNumericCompatibility()
Get the Numeric compatibility mode. See setNumericCom-
patibility.

Integer isVariable(s)
Return 1if sisavariable, 0 otherwise. See also: asVariable.

36 Climate Data Management System

cdms2 module

Table 2.2 cdms2 module functions

Type

Dataset
or
CdmsFile

List

List

Definition
open(url,mode='"r")
Open or create a Dataset or CdmsFile.

url isa Uniform Resource Locator, referring to a cdunif or
XML file. If the URL has the extension '.xml" or .cdml’, a
Dataset is returned, otherwise a CdmsFileis returned. If the
URL protocaol is 'http', the file must be a'.xml" or ".cdml’ file,
and the mode must be 'r'. If the protocal is'file' or is omitted, a
local file or dataset is opened.

mode is the open mode. See Table 2.24 on page 70.
Example: Open an existing dataset:

f = cdns2. open(“sanpl eset.xm ")

Example: Create a netCDF file:

f = cdnms2. open(“newfile.nc”,’w)

order 2index (axes, orderstring)

Find the index permutation of axesto match order. Return a
list of indices

axesisalist of axis objects.
orderstring is defined asin order par se.

or derparse(order string)

Parse an order string. Returns alist of axes specifiers.
orderstring consists of:

e Letterst, x, y, z meaning time, longitude, latitude, level
¢ Numbers 0-9 representing position in axes

e Dash (-) meaning insert the next available axis here.

e Theeéllipsis ... meaning fill these positions with any
remaining axes.
¢ (name) meaning an axiswhoseid is name

Climate Data Management System

37

CDMS Python Application Programming Interface

Table 2.2 cdms2 module functions

Type

None

None

Definition
setAutoBounds(mode)

Set autobounds mode. In some circumstances CDM S can gen-
erate boundaries for 1-D axes and rectilinear grids, when the
bounds are not explicitly defined. The autoBounds mode
determines how thisis done:

If modeis‘grid’ or 2 (the default), the getBounds method will
automatically generate boundary information for an axis or
grid if the axisis designated as alatitude or longitude axis, and
the boundaries are not explicitly defined.

If modeis’on’ or 1, the getBounds method will automatically
generate boundary information for an axis or grid, if the
boundaries are not explicitly defined.

If modeis’off’ or 0, and no boundary datais explicitly
defined, the boundswill NOT be generated; the getBounds
method will return None for the boundaries.

Note: In versions of CDMS prior to V4.0, the default mode
was‘on’.

setClassifyGrids(mode)

Set the grid classification mode. This affects how grid typeis
determined, for the purpose of generating grid boundaries.

If modeis’on’ (the default), grid type is determined by a grid
classification method, regardless of the value of grid.get-

Type().
If modeis’off’, the value of grid.getType() determines the
grid type

38

Climate Data Management System

cdms2 module

Table 2.2 cdms2 module functions

Type Definition

None setNumericCompatibility(mode)
Set the mode for backward compatibility with the Numeric
module.

If mode is False (the default), 0-D dices of CDMS variables
arereturned as scalars, and MV functions with an axis arg
have a default axis value of None, meaning to ravel the array.

If modeis True, 0-D slices are returned as 0-D arrays, and the
default axis arg of MV functionsis 0, meaning the first axis.

This function is new in Version 5.

None writeScripGrid(path, grid, gridTitle=None)
Write agrid to a SCRIP grid file.
path is astring, the path of the SCRIP file to be created.
gridisaCDMS grid object. It may be rectangular.
gridTitleisastring ID for the grid.

Table 2.3 Class Tags

Tag Class

‘axis AXxis

' database’ Database

'dataset' Dataset, CdmsFile
‘grid’ RectGrid

‘variable Variable

'xlink' Xlink

Climate Data Management System 39

CDMS Python Application Programming Interface

2.4 CdmsObj

A CdmsObj isthe base class for all CDM S database objects. At the
application level, CdmsObj objects are never created and used directly.
Rather the subclasses of CdmsObj (Dataset, Variable, Axis, etc.) arethe
basis of user application programming.

All objectsderived from CdmsObj have aspecia attribute .attributes. This
is aPython dictionary, which contains all the external (persistent) attributes
associated with the object. Thisisin contrast to the internal, non-persistent
attributes of an object, which are built-in and predefined. When aCDMS
object iswritten to afile, the external attributes are written, but not the
internal attributes.

Example: get alist of all external attributes of obj.

extatts = obj.attributes. keys()

Table 2.4 Attributes common to all CDMS objects

Type Name Definition
Dictionary attributes External attribute dictionary for this object.

All attributes may be accessed and set using the Python dot notation (*.")

Table 2.5 Getting and setting attributes

Type Definition

Various value = obj.atthame

Get aninternal or external attribute value. If the attribute
isexternal, it is read from the database. If the attribute is not
aready in the database, it is created as an external attribute.
Internal attributes cannot be created, only referenced.

40

Climate Data Management System

CoordinateAxis

Table 2.5 Getting and setting attributes

Type

Definition

obj.attname = value

Set aninternal or external attribute value. If the attribute

isexternal, it is written to the database.

2.5 CoordinateAxis

A CoordinateAxisis avariable that represents coordinate informar
tion. It may be contained in afile or dataset, or may be transient (memory-
resident). Setting a dlice of afile CoordinateAxis writesto thefile, and ref-
erencing afile CoordinateAxis slice reads data from the file. Axis objects
are aso used to define the domain of a Variable.

CDMS defines severa different types of CoordinateAxis abjects. Table 2.9
on page 44 documents methods that are common to al CoordinateAxis
types. Table 2.10 on page 48 specifies methods that are unique to 1D Axis

objects.

Table 2.6 CoordinateAxis types

Type

CoordinateAxis

Definition

A variable that represents coordinate information. Has sub-
types Axis2D and AuxAXxisliD.

AXxis

A one-dimensional coordinate axis whose values are strictly
monotonic. Has subtypes DatasetAxis, FileAxis, and Transien-
tAxis. May be an index axis, mapping arange of integersto
the equivalent floating point value. If alatitude or longitude
axis, may be associated with a RectGrid.

Axis2D

A two-dimensional coordinate axis, typically alatitude or lon-
gitude axis related to a CurvilinearGrid. Has subtypes
DatasetAxis2D, FileAxis2D, and TransientAxis2D.

Climate Data Management System 41

CDMS Python Application Programming Interface

Table 2.6 CoordinateAxis types

Type Definition

AuxAXxislD A one-dimensional coordinate axis whose values need not be
monotonic. Typically alatitude or longitude axis associated
with a GenericGrid. Has subtypes DatasetAuxAxislD,
FileAuxAxislD, and TransientAuxAXxislD.

Anaxisin aCdmsFile may be designated the ‘ unlimited’ axis, meaning that
it can be extended in length after the initial definition. There can be at most
one unlimited axis associated with a CdmsFile.

Table 2.7 CoordinateAxis Internal Attributes

Type Name Definition

Dictionary attributes External attribute dictionary.

String id CoordinateAxis identifer.

Dataset parent The dataset which contains the variable.

Tuple shape The length of each axis.

Datatype dtype NumPy datatype. dtype.char is the typecode.
See the NumPy manual.

Table 2.8 Axis Constructors

cdms2.createAxis(data, bounds=None)

Create an axis which is not associated with a dataset or file. See Table 2.2 on
page 31.

Dataset.createAxis(name,ar)
Create an Axisin a Dataset. (This function isnot yet implemented.)

42 Climate Data Management System

CoordinateAxis

Table 2.8 Axis Constructors

CdmsFile.createAxis(name,ar,unlimited=0)
Create an Axisin aCdmsFile.
name s the string name of the Axis.

ar isa1-D data array which defines the Axis values. It may have the value
Noneif an unlimited axisis being defined.

At most one Axis in a CdmsFile may be designated as being "unlimited’,
meaning that it may be extended in length. To define an axis as unlimited,
either:

» set ar to None, and leave unlimited undefined, or
e setartotheinitial 1-D array, and set unlimited to cdms2.Unlimited

cdms2.createEqual AreaAxis(nlat)
See Table 2.2 on page 31.

cdms2.createGaussianAxis(nlat)
See Table 2.2 on page 18.

cdms2.createUniformL atitudeAxis(startlat, nlat, deltalat)
See Table 2.2 on page 18.

cdms2.createUniformL ongitudeAxis(startlon, nlon, deltalon)
See Table 2.2 on page 18.

Climate Data Management System

CDMS Python Application Programming Interface

Table 2.9 CoordinateAxis Methods

Type

Array

None

None

AXxis

None

Method Definition
array = axigl i:j]

Read a slice of datafrom the external file or dataset. Data
isreturned in the physical ordering defined in the dataset.
See Table 2.11 on page 51 for a description of slice oper-
ators.

axig[i:j] = array

Write adice of datato the external file. Dataset axesare
read-only.

assignValue(array)
Set the entire value of the axis.

array isaNumPy array, of the same dimensionality asthe
axis.

clone(copyData=1)

Return a copy of the axis, asatransient axis. If copyDatais 1
(the default) the data itself is copied.

designatel atitude(per sistent=0):
Designate the axis to be a latitude axis.

If persistent istrue, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

SeeislL atitude.

Climate Data Management System

CoordinateAxis

Table 2.9 CoordinateAxis Methods

Type

None

None

None

Method Definition

designatel evel (per sistent=0)
Designate the axis to be a vertical level axis.

If persistent istrue, the externa file or dataset (if any) is mod-
ified. By default, the designation is temporary.

SeeisL evel.

designatel ongitude(per sistent=0, modul0=360.0)
Designate the axis to be alongitude axis.

modulo isthe modulus value. Any given axisvaluex istreated
as equivalent to x+modulus

If persistent istrue, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

SeeisL ongitude.

designateTime(per sistent=0, calendar =
cdtime.MixedCalendar)

Designate the axis to be atime axis.

If persistent istrue, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

calendar is defined asin getCalendar ().
SeeisTime.

Climate Data Management System

45

CDMS Python Application Programming Interface

Table 2.9 CoordinateAxis Methods

Type Method Definition

Array getBounds()
Get the associated boundary array.
The shape of the return array depends on the type of axis:

Axis: (n,2)
AXxis2D: (i,j,4)
AuxAXxislD: (ncell, nvert) where nvert is the maximum

number of vertices of acell.

If the boundary array of alatitude or longitude Axisis not
explicitly defined, and autoBounds mode is on, a default array
is generated by calling genGenericBounds. Otherwise if auto-
Bounds mode is off, the return value is None. See setAuto-
Bounds.

Integer getCalendar ()

Returns the calendar associated with the (time) axis. Possible
return values, as defined in the cdtime module, are:

cdtime.GregorianCalendar: the standard Gregorian calen-
dar

cdtime.MixedCalendar: mixed Julian/Gregorian calendar
cdtime. JulianCalendar: years divisible by 4 are leap years
cdtime.NoL eapCalendar: ayear is 365 days
cdtime.Calendar360: ayear is 360 days

None: no calendar can be identified

Note: If the axisis not atime axis, the global, file-related cal-
endar is returned.

Array getValue()
Get the entire axis vector.

46

Climate Data Management System

CoordinateAxis

Table 2.9 CoordinateAxis Methods

Type Method Definition

Integer isL atitude()

Returns true iff the axisis a latitude axis.An axisax is
considered alatitude axisiif:

¢ axaxiss='Y’, or

e axid[0:3]=="lat’, or

e axidisinthelist cdms2.axis.latitude aliases.

Integer isL evel()

Returnstrue iff the axisisalevel axis. axisalevel axis

if:

s axaxiss='Z', or

e axid[0:3]=="lev’, ax.id[0:5]=="depth’, or
ax.id[0:4]=="plev’, or

e ax.idisinthelist cdms2.axis.level aliases

Integer isL ongitude()
Returnstrue iff the axisis alongitude axis. ax is alongi-

tude axisif:

o axaxiss='X’, or
e axid[0:3]=="lon’, or
e axidisinthelist cdms2.axis.|ongitude aliases

Climate Data Management System 47

CDMS Python Application Programming Interface

Table 2.9 CoordinateAxis Methods

Type

Integer

Integer

Integer

String

Method Definition

isTime()

Returnstrueiff the axisis atime axis. ax is alongitude
axisif:

s axaxis=='T’, or

e axid[0:4]=="time’, or

e ax.idisincdms2.axistime aliases

len(axis)

The length of the axisif one-dimensional. If multidimen-
sional, the length of thefirst dimension.

size()
The number of elementsin the axis.

typecode() or axis.dtype.char
The NumPy datatype identifier.

Table 2.10 Axis Methods, additional to CoordinateAxis methods

Type

List of com-
ponent
times

List of rela-
tive times

Method Definition

asComponentTime(calendar =None)

Array version of cdtime tocomp. Returnsalist of com-
ponent times.

asRelativeTime()

Array version of cdtimetorel. Returns alist of relative
times.

Climate Data Management System

CoordinateAxis

Table 2.10 Axis Methods, additional to CoordinateAxis methods

Type

None

Integer

Integer

Tuple

Method Definition

designateCircular (modulo, persistent=0)
Designate the axis to be circular.

modulo isthe modulus value. Any given axisvaluex is treated
as equivalent to x+modulus

If persistent istrue, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

isCircular ()

Returnstrue if the axis has circular topology.

An axisisdefined as circular if:

e axis.topology=="circular’, or

* axis.topology isundefined, and the axis is alongitude
The default cyclefor circular axesis 360.0

isLinear ()
Returns true iff the axis has a linear representation.

mapl nterval(interval)

Same as mapl ntervalExt, but returns only the tuple (i,j), and
wraparound is restricted to one cycle.

Climate Data Management System

49

CDMS Python Application Programming Interface

Table 2.10 Axis Methods, additional to CoordinateAxis methods

Type Method Definition

(i,J,K) mapl ntervalExt(interval)
Map a coordinate interval to an index interval.

interval is atuple having one of the forms:

(xy)

(x,y,indicator)
(x,y,indicator,cycle)
Noneor ':’

where x and y are coordinates indicating the interval
[x,y), and:

indicator isatwo or three-character string, where the
first character is'c' if the interval is closed on the l€ft, ‘o'
if open, and the second character has the same meaning
for the right-hand point. If present, the third character
specifies how the interval should be intersected with the
axis:

e 'n’ - select node values which are contained in the interval

e 'D - select axis elements for which the corresponding cell
boundary intersects the interval

e '@ -sameas’n’, but include an extra node on either side

e 'S - select axis elements for which the cell boundary isa
subset of the interval

The default indicator is’ cen’ , that is, the interval is
closed, and nodes in the interval are selected.

(continued)

50

Climate Data Management System

CoordinateAxis

Table 2.10 Axis Methods, additional to CoordinateAxis methods

Type

Transien-
tAXis

Method Definition

(mapl nterval, continued)

If cycle is specified, the axis is treated as circular with
the given cycle value. By default, if axis.isCircular() is
true, the axisistreated as circular with a default modulus
of 360.0.

Aninterval of Noneor ;" returns the full index interval
of the axis.

The method returns the corresponding index interval as a 3-

tuple (i,j,k), where k is the integer stride, and [i.j) is the half-

open index interval i<=k<j (i>=k>j if k<0), or None if the

intersection is empty.

For an axiswhich iscircular (axis.topology == ‘circular’), [i,j)

isinterpreted as follows, where N=len(axis):

e if O<=i<N and 0<=j<=N, the interval does not wrap around
the axis endpoint.

e otherwise theinterval wraps around the axis endpoint.

See also: maplnterval, Variable.subRegion()

subAxis(i,j k=1)

Create an axis associated with the integer range [i:j:k]. The
stride k can be positive or negative. Wraparound is supported
for longitude dimensions or those with a modul us attribute.

Table 2.11 Axis Slice Operators

Slice

Definition

[i]

Theith element, starting with index 0

[i:]]

The ith element through, but not including, el ement |

Climate Data Management System 51

CDMS Python Application Programming Interface

Table 2.11 Axis Slice Operators

Slice Definition

[i:] The ith element through and including the end

[:] The beginning element through, but not including, element
J

[:] The entire array

[i:j:K] Every kth element, starting at i, through but not including j

[-i] Theith element from the end. -1 isthe last element.

Example: A longitude axis hasvalue [0.0, 2.0, ..., 358.0], of length 180.
Map the coordinate interval -5.0 <= x < 5.0 to index interval(s), with wrap-
around. The result index interval -2<=n<3 wraps around, since -2<0, and
has astride of 1. Thisis equivalent to the two contiguous index intervals -
2<=n<0 and 0<=n<3

> axis.isCircular()

1

> axis.maplnterval Ext((-5.0,5.0,"co’))

(-2,3,1)
>

2.6 CdmsFile

A CdmsFileisaphysical file, accessible viathe cdunif interface.
netCDF files are accessible in read-write mode. All other formats (DRS,
HDF, GrADS/GRIB, POP, QL) are accessible read-only.

Asof CDMS V3, thelegacy cuDataset interface is also supported by Cdms-
Files. See “cu Module” on page 180.

Table 2.12 CdmsFile Internal Attributes

Type Name Definition
Dictionary attributes Glaobal, external file attributes

52

Climate Data Management System

CdmskFile

Table 2.12 CdmsFile Internal Attributes

Type Name Definition

Dictionary axes AXxis objects contained in the file.
Dictionary grids Grids contained in the file.
String id File pathname.

Dictionary variables Variables contained in the file.

Table 2.13 CdmsFile Constructors

fileobj = cdms2.open(path, mode)

Open the file specified by path returning a CdmsFile object.

path is the file pathname, a string.

mode is the open mode indicator, aslisted in Table 2.24 on page 70.

fileobj = cdms2.createDataset(path)
Create the file specified by path, a string.

Table 2.14 CdmsFile Methods

Type Definition
Transient- fileobj(varname, selector)
Variable

Calling a CdmsFile object as a function reads the region of
data specified by the selector. Theresult isatransient variable,
unlessraw=1 is specified. See “ Selectors’ on page 102.

For example, the following reads data for variable 'prc’, year
1980:

f
X

cdnms2. open(’'test.nc’)
f('prc’, time=('1980-1','1981-1"))

Climate Data Management System 53

CDMS Python Application Programming Interface

Table 2.14 CdmsFile Methods

Type

Variable,
AXis, or
Grid

None

AXxis

Grid

Definition

fileobj['id']

Get the persistent variable, axis or grid object having the string
identifier. This does not read the data for avariable.

For example:
f = cdns2. open(’ sanple.nc’)
v = f['prc’]

gets the persistent variable v, equivalent to v=f . vari -
ables['prc’].

t = f['time]
gets the axis named 'time’, equivalent tot =f . axes[' tine’] .

close()

Close thefile.

copyAxis(axis, newname=None)

Copy axis values and attributes to anew axisin thefile. The
returned object is persistent: it can be used to write axis datato
or read axis datafrom the file. If an axis already existsin the
file, having the same name and coordinate values, it is
returned. It is an error if an axis of the same name exists, but
with different coordinate values.

axisisthe axis object to be copied.

newname, if specified, isthe string identifier of the new axis
object. If not specified, the identifier of the input axisis used.

copyGrid(grid, newname=None)

Copy grid values and attributes to a new grid in the file. The
returned grid is persistent. If agrid already existsin thefile,
having the same name and axes, it isreturned. An error is
raised if agrid of the same name exists, having different axes.

gridisthe grid object to be copied.

newname, if specified is the string identifier of the new grid
object. If unspecified, the identifier of the input grid is used.

Climate Data Management System

CdmskFile

Table 2.14 CdmsFile Methods

Type

AXis

RectGrid

Variable

Definition
createAxis(id, ar, unlimited=0)

Create anew Axis. Thisis a persistent object which can be
used to read or write axis datato thefile.

id is an aphanumeric string identifier, containing no blanks.
ar isthe one-dimensional axis array.

Set unlimited to cdms2.Unlimited to indicate that the axisis
extensible.

createRectGrid(id, lat, lon, order, type=" generic",
mask=None)

Create aRectGrid in thefile. Thisis not apersistent object: the
order, type, and mask are not written to the file. However, the
grid may be used for regridding operations.

lat is alatitude axisin thefile.
lon isalongitude axisin the file.

order isastring with value “yx” (thefirst grid dimensionis
latitude) or “xy” (thefirst grid dimension is longitude).
typeisone of 'gaussian’,’uniform’,’ equalarea’ ,or ' generic’

If specified, mask is a two-dimensional, logical NumPy array
(all values are zero or one) with the same shape as the grid.

createVariable(String id, String datatype,List axes,
fill_value=None)

Create anew Variable. Thisis a persistent object which can be
used to read or write variable data to the file.

id is a String name which is unique with respect to all other
objectsin thefile.

datatype is a numpy datatype, e.g., numpy.float, numpy.int.
axesisalist of Axisand/or Grid objects.
fill_valueis the missing value (optional).

Climate Data Management System

55

CDMS Python Application Programming Interface

Table 2.14 CdmsFile Methods

Type

Variable

CurveGrid
or Generic-
Grid

None

Definition
createVariableCopy(var, newname=None)

Create anew Variable, with the same name, axes, and
attributes as the input variable. An error israised if avariable
of the same name existsin thefile.

var isthe Variable to be copied.

newname, if specified is the name of the new variable. If
unspecified, the returned variable has the same name as var.

Note: Unlike copyAxis, the actual datais not copied to the
new variable.

readScripGrid(self, whichGrid="destination’, check-
Grid=1)

Read a curvilinear or generic grid from a SCRIP netCDF file.

The file can be a SCRIP grid file or remapping file.

If amapping file, whichGrid chooses the grid to read, either

"source" Of "destination".

If checkGrid is 1 (default), the grid cells are checked for con-
vexity, and 'repaired if necessary. Grid cells may appear to be
nonconvex if they crossa 0/ 2pi boundary. The repair consists
of shifting the cell vertices to the same side modulo 360
degrees.

sync()
Writes any pending changes to the file.

56 Climate Data Management System

CdmskFile

Table 2.14 CdmsFile Methods

Type

Variable

Definition

write(var, attributes=None, axes=None, ext-
bounds=None, id=None, extend=None,
fill_value=None, index=None, typecode=None)

Write avariable or array to the file. The return value is the
associated file variable.

If the variable does not exist in the file, it isfirst defined and
all attributes written, then the data is written. By default, the
time dimension of the variable is defined as the ' unlimited’
dimension of thefile. If the datais already defined, then datais
extended or overwritten depending on the value of keywords
extend and index, and the unlimited dimension val ues associ-
ated with var.

var is a Variable, masked array, or NumPy array.
attributesis the attribute dictionary for the variable. The
default is var.attributes.

axesisthe list of file axes comprising the domain of the vari-
able. The default isto copy var.getAxisList().

extbounds is the unlimited dimension bounds. Defaults to
var.getAxis(0).getBounds()

id isthe variable namein the file. Default is var.id.

extend=1 causes the first dimension to be 'unlimited’: itera-
tively writeable. The default is None, in which case the first
dimension is extensible if it istime.Set to 0 to turn off this
behaviour.

fill_valueisthe missing value flag.

index is the extended dimension index to write to. The default
index is determined by lookup relative to the existing extended
dimension.

Note: data can also be written by setting aslice of afile vari-
able, and attributes can be written by setting an attribute of a
file variable.

Climate Data Management System

57

CDMS Python Application Programming Interface

Table 2.15 CDMS Datatypes

CDMS
Datatype Definition
CdChar character
CdDouble doubl e-precision floating-point
CdFloat floating-point
Cdint integer
CdLong long integer
CdShort short integer
2.7 Database

A Database is a collection of datasets and other CDM S objects. It
consists of ahierarchical collection of objects, with the database being at
the root, or top of the hierarchy. A database is used to:
¢ search for metadata
* accessdata
e provide authentication and access control for data and metadata

The figure below illustrates several important points:
e Each object in the database has arelative name of the form tag=id. Theid of an
object is unique with respect to all objects contained in the parent.

¢ The name of the object consists of its relative name followed by the relative
name(s) of its antecedent objects, up to and including the database name. In the
figure below, one of the variables has name

“vari abl e=ua, dataset=ncep_reanal ysi s_np, dat abase=CDV5".

58

Climate Data Management System

Database

* Subordinate objects are thought of as being contained in the parent. In this
example, the database ‘CDMS' contains two datasets, each of which contain
several variables.

database=CDM S

dataset=ncep reanalysis mo dataset=ecmwf reanalysis mo

variable=ua variable=va variable=ua variable=va

2.7.1 Overview
To access a database:

1. Open a connection. The connect method opens a database connection. connect

takes a database URI and returns a database object:
db = cdns2. connect (“1 dap://dbhost. 11 nl.gov/
dat abase=CDMs, ou=PCMDI , o=LLNL, c=US")

2. Search the database, locating one or more datasets, variables, and/or other
objects.

The database sear chFilter method searches the database. A single database
connection may be used for an arbitrary number of searches.

For example, to find all observed datasets:

result = db.searchFilter("category=observed",tag="dataset”)

Searches can be restricted to a subhierarchy of the database. This example
searches just the dataset ‘ncep_reanalysis mo’:

result = db.searchFilter(rel base="dataset=ncep_reanal ysis”)

Climate Data Management System 59

CDMS Python Application Programming Interface

3. Refinethe search results if necessary. The result of a search can be narrowed
with the sear chPredicate method.

4. Processtheresults. A search result consists of a sequence of entries. Each entry

has a name, the name of the CDM S object, and an attribute dictionary, consist-

ing of the attributes |ocated by the search:
for entry in result:
print entry.name, entry.attributes

5. Accessthedata. The CDM S object associated with an entry is obtained from the
getObj ect method:
obj = entry. get Oj ect ()

If theid of adataset is known, the dataset can be opened directly with the

open method:

dset = db. open(“ncep_reanal ysis_mn")

6. Close the database connection:
db. cl ose()

Table 2.16 Database Internal Attributes

Type Name Summary

Dictionary attributes Database attribute dictionary

LDAP db (LDAP only) LDAP database object
String netloc Hostname, for server-based databases
String path path name

String uri Uniform Resource |dentifier.

60

Climate Data Management System

Database

Table 2.17 Database Constructors

db = cdms2.connect(uri=None, user="", password="")
Connect to the database.

uri isthe Universal Resource Indentifier of the database. The form of the URI
depends on the implementation of the database. For a Lightweight Directory
Access Protocol (LDAP) database, the formis:

| dap: //host[: port]/dbnanme

For example, if the database is|ocated on host ‘ dbhost.lInl.gov’, and is named
' database=CDM S,ou=PCMDI,0=LLNL,c=US, the URI is:
| dap: // dbhost . | | nl . gov/ dat abase=CDMS, ou=PCMDI , o=LLNL, c=US

If unspecified, the URI defaults to the value of environment variable
CDMSROOT.

user isthe user ID. If unspecified, an anonymous connection is made.

password is the user password. A password is not required for an anon-
ymous connection.

Table 2.18 Database Methods

Type Definition

None close()
Close a database connection.

List listDatasets()

Return alist of the dataset I Dsin this database. A dataset ID
can be passed to the open command.

Climate Data Management System 61

CDMS Python Application Programming Interface

Table 2.18 Database Methods

Type Definition
Dataset open(dsetid, mode="r")
Open a dataset.

dsetid is the string dataset identifier

modeisthe open mode, 'r’ - read-only, 'r+' - read-write, 'w’ -
create.

openDataset is a synonym for open.

62

Climate Data Management System

Database

Table 2.18 Database Methods

Type

SearchResult

Definition

sear chFilter (filter=None, tag=None, relbase=None,
scope=Subtree, attnames=None, timeout=None)

Search a CDMSS database.

filter isthe string search filter. Simple filters have the form
"tag = value". Simple filters can be combined using logical
operators’&’,’[',’!" in prefix notation. For example, thefilter
' (& (objectclass=variable)(id=cli))’ finds all variables named
“cli”. A formal definition of search filtersis provided in the
following section.

tag restricts the search to objects with that tag ("dataset” |
"variable" | "database" | "axis" | "grid").

relbaseis the relative name of the base object of the search.
The search isrestricted to the base object and all objects below
it in the hierarchy. For example, to search only dataset
‘ncep_reanalysis mo’, specify:

rel base="dat aset =ncep_r eanal ysi s_npn”.

To search only variable’ua’ in ncep_reanalysis mo, use:

rel base="vari abl e=ua,
dat aset =ncep_r eanal ysi s_nmo”

If no base is specified, the entire database is searched. See the
scope argument also.

scopeisthe search scope (Subtree | Onelevel | Base). Subtree
searches the base object and its descendants. Onelevel
searches the base object and its immediate descendants. Base
searches the base object alone. The default is Subtree.

attnames: list of attribute names. Restricts the attributes
returned. If None, all attributes are returned. Attributes’id’
and 'objectclass’ are awaysincluded in the list.

timeout: integer number of seconds before timeout. The
default is no timeout.

Climate Data Management System

63

CDMS Python Application Programming Interface

2.7.2 Searching a database

The searchFilter method is used to search adatabase. Theresult is
called a search result, and consists of a sequence of result entries.

Inits simplest form, searchFilter takes an argument consisting of a string
filter. The search returns a sequence of entries, corresponding to those
objects having an attribute which matches the filter. Simple filters have the
form (tag = value), where value can contain wildcards. For example:

"(id = ncep*)’

"(project = AMP2)’
Simplefilters can be combined with the logical operators‘&’, ‘[, ‘!". For
example,

"(&(id = bnrc*)(project = AMP2))’

matches all objectswith id starting with "bmrc’, and a’ project’ attribute
with value’ AMIP2'.

Formally, search filters are strings defined as follows:

filter = "(" filtercomp ")"
filterconp ::= "& filterlist | # and
"|" filterlist | # or
"I" filterlist | # not
sinmpl e
filterlist =filter | filter filterlist
simpl e ;1= tag op val ue
op i= 0 "=" | # equality
"~=" | # approximate equality
"<=" | # lexicographically less than or equal to
">=" # | exi cographically greater than or equal to
tag = string attribute nanme
val ue = string attribute value, may include '*' as a wild card

Attribute names are defined in the chapter on “ Climate Data Markup Lan-
guage (CDML)” on page 147. In addition, some special attributes are
defined for convenience:

e category iseither “experimenta” or “observed’

e parentid isthe ID of the parent dataset

Climate Data Management System

Database

* project isaproject identifier, e.g., “AMIP2"
e objectclassisthelist of tags associated with the object.

The set of objects searched is called the search scope. The top object in the
hierarchy isthe base object. By default, all objects in the database are
searched, that is, the database is the base object. If the database is very
large, this may result in an unnecessarily slow or inefficient search. To rem-
edy this the search scope can be limited in several ways:

¢ The base object can be changed.

* The scope can be limited to the base object and one level below, or to just the
base object.

* The search can be restricted to objects of agiven class (dataset, variable, etc.)
* The search can be restricted to return only a subset of the object attributes
e The search can be restricted to the result of a previous search.

A search result is accessed sequentially within a for loop:

result = db.searchFilter(’ (& category=obs*)(id=ncep*))’)
for entry in result
print entry.name

Search results can be narrowed using sear chPredicate. In the following
example, the result of one search isitself searched for all variables defined
on a94x192 grid:

>>> result = db.searchFilter(’ parentid=ncep*’,tag="variable")

>>> | en(result)

65

>>> result2 = result.searchPredi cate(l anbda x
X.getGid().shape==(94, 192))

>>> | en(result?2)

3

>>> for entry in result2: print entry.name

vari abl e=rl uscs, dat aset =ncep_r eanal ysi s_np, dat abase=CDMs, ou=PCMDI ,
0=LLNL, c=US

vari abl e=rl ds, dat aset =ncep_r eanal ysi s_no, dat abase=CDVS, ou=PCMDI ,
0=LLNL, c=Us

vari abl e=r| us, dat aset =ncep_r eanal ysi s_no, dat abase=CDMS, ou=PCMDI ,
0=LLNL, c=Us

>>>

Climate Data Management System 65

CDMS Python Application Programming Interface

Table 2.19 SearchResult Methods

Type Definition

ResultEntry [i]

Return the i-th search result. Results can also be returned in a
for loop:

for entry in db.searchResult(tag="dataset"):

Integer Ien()
Number of entriesin the result.

SearchResult sear chPredicate(predicate, tag=None)
Refine a search result, with a predicate search.

predicate is a function which takes a single CDM S object and
returns true (1) if the object satisfies the predicate, O if not.

tag restricts the search to objects of the class denoted by the
tag.

Note: In the current implementation, searchPredicate is much
less efficient than sear chFilter. For best performance, use
sear chFilter to narrow the scope of the search, then use

sear chPredicate for more general searches.

A search result is a sequence of result entries. Each entry has a string name,
the name of the object in the database hierarchy, and an attribute dictionary.
An entry corresponds to an object found by the search, but differs from the
object, in that only the attributes requested are associated with the entry. In
general, there will be much more information defined for the associated
CDMS object, which is retrieved with the getObj ect method.

66

Climate Data Management System

Database

Table 2.20 ResultEntry Attributes

Type Name Summary
String name The name of this entry in the database.
Dictionary attributes The attributes returned from the search.

attributes[key] isalist of all string values asso-
ciated with the key.

Table 2.21 ResultEntry Methods

Type Definition

CdmsObj getObject()
Return the CDM S object associated with this entry.

Note: For many search applicationsit is unnecessary to access
the associated CDM S object. For best performance this func-
tion should be used only when necessary, for example, to
retrieve data associated with avariable.

2.7.3 Accessing data
To access datavia CDMS:
1. Locate the dataset ID. This may involve searching the metadata.

2. Open the dataset, using the open method.
3. Reference the portion of the variable to be read.

In the next example, a portion of variable’ua’ is read from dataset
'ncep_reanalysis mo’:
dset = db. open(’ ncep_reanal ysis_no’)

ua = dset.variables[’ua’']
data = ua[0, 0]

Climate Data Management System 67

CDMS Python Application Programming Interface

2.74 Examplesof database searches

In the following examples, db is the database opened with

db = cdms2. connect ()
This defaults to the database defined in environment variable CDMSROOQOT.

List al variablesin dataset 'ncep_reanalysis mo’:

for entry in db.searchFilter(filter="parentid=ncep_reanal ysis_no",
tag="vari abl e"):
print entry.nane

Find all axes with bounds defined:

for entry in db.searchFilter(filter="bounds=*",tag="axis"):
print entry.name

Locate all GDT datasets:

for entry in
db. searchFilter(filter="Conventi ons=GDT*", tag="dat aset"):
print entry.name

Find al variables with missing time values, in observed datasets:

def m ssingTime(obj):
time = obj.getTinme()
return time.length !'=tinme.partition_|length

result = db.searchFilter(filter="category=observed")
for entry in result.searchPredi cate(m ssingTine):
print entry.nane

Find all CMIP2 datasets having avariable withid "hfss":

for entry in
db. searchFilter(filter="(& project=CM P2) (id=hfss))",tag="var
i abl e"):
print entry.getObject().parent.id

68

Climate Data Management System

Dataset

Find al observed variables on 73x144 grids:

result = db.searchFilter(’category=obs*’)
for entry in result.searchPredicate(lanmbda x:
X.getGid().shape==(73, 144),tag="variable"):
print entry.name

Find all observed variables with more than 1000 timepoints:

result = db.searchFilter(’ category=obs*")
for entry in result.searchPredicate(l anbda x: |en(x.getTine())>1000,
tag="variable"):
print entry.name, len(entry.getObject().getTine())

Find the total number of each type of object in the database

print | en(db.searchFilter(tag="database")), "database"
print len(db.searchFilter(tag="dataset")), "datasets"
print len(db.searchFilter(tag="variable")), "variabl es"
print len(db.searchFilter(tag="axis")), "axes"

2.8 Dataset

A Dataset isavirtua file. It consists of ametafile, in COML/XML repre-
sentation, and one or more data files.

Asof CDMS V3, thelegacy cuDataset interface is supported by Datasets.
See “cu Module”’ on page 180.

Table 2.22 Dataset Internal Attributes

Type Name Summary

Dictionary attributes Dataset external attributes.

Dictionary axes Axes contained in the dataset.

String datapath Path of datafiles, relative to the parent data-

base. If no parent, the datapath is absolute.

Climate Data Management System 69

CDMS Python Application Programming Interface

Table 2.22 Dataset Internal Attributes

Type Name Summary

Dictionary grids Grids contained in the dataset.

String mode Open mode.

Database parent Database which contains this dataset. If the
dataset is not part of a database, the valueis
None.

String uri Uniform Resource Identifier of this dataset.

Dictionary variables Variables contained in the dataset.

Dictionary xlinks External links contained in the dataset.

Table 2.23 Dataset Constructors

datasetobj = cdms2.open(String uri, Sring mode="r")

Open the dataset specified by the Universal Resource Indicator, a CDML file.
Returns a Dataset object. mode is one of the indicators listed in Table 2.24 on

page 70.
openDataset is a synonym for open.

Table 2.24 Open Modes

Mode Definition
r read-only
r+' read-write
'a read-write. Open thefileif it exists, otherwise create a
new file
‘w' Create anew file, read-write

Climate Data Management System

Dataset

Table 2.25 Dataset Methods

Type

Transient-
Variable

Variable,
AXis, or
Grid

None

AXis

Definition
datasetobj(var name, selector)

Calling a Dataset object as a function reads the region of data
defined by the selector. The result isatransient variable,
unlessraw=1 is specified. See “ Selectors’ on page 102.

For example, the following reads data for variable ' prc’, year
1980:

f
X

cdms2. open(’test.xm ")
f('prc’, time=('1980-1','1981-1"))

datasetobj['id’]

The square bracket operator applied to a dataset gets the per-
sistent variable, axis or grid object having the string identifier.
This does not read the data for a variable. Returns None if not
found.

For example:

f cdns2. open(’ sanmple. xm ")

Y f['prc’]
gets the persistent variable v, equivalent to v=f . vari -
abl es['prc’].

t = f['time']
getsthe axis named ‘time’, equivalenttot =f . axes[' tine'].

close()
Close the dataset.

getAxis(id)
Get an axis object from the file or dataset.
id isthe string axis identifier.

Climate Data Management System 71

CDMS Python Application Programming Interface

Table 2.25 Dataset Methods

Type

Grid

List

Variable

CurveGrid
or Generic-
Grid

None

Definition

getGrid(id)

Get a grid object from afile or dataset.
id isthe string grid identifier.

getPaths()

Get a sorted list of pathnames of datafiles which comprise the
dataset. This does not include the XML metafile path, whichis
stored in the .uri attribute.

getVariable(id)
Get avariable object from afile or dataset.
id isthe string variable identifier.

readScripGrid(self, whichGrid="destination’, check-
Grid=1)

Read a curvilinear or generic grid from a SCRIP dataset. The

dataset can be a SCRIP grid file or remapping file.

If amapping file, whichGrid chooses the grid to read, either
"source" Of "destination".

If checkGrid is 1 (default), the grid cells are checked for con-
vexity, and 'repaired if necessary. Grid cells may appear to be
nonconvex if they crossa 0/ 2pi boundary. The repair consists
of shifting the cell vertices to the same side modulo 360
degrees.

sync()

Write any pending changes to the dataset.

72

Climate Data Management System

MV2 module

2.9 MV2 module

The fundamental CDM S data object isthe variable. A variable is comprised
of:

* amasked data array, as defined in the NumPy numpy.core.ma module.

e adomain: an ordered list of axes and/or grids.

e an attribute dictionary.

The MV 2 module is awork-alike replacement for the numpy.core.ma mod-
ule, that carries along the domain and attribute information where appropri-
ate. MV 2 provides the same set of functions as numpy.core.ma. However,
MV 2 functions generate transient variables as results. Often this simplifies
scripts that perform computation. numpy.core.mais part of the Python
NumPy package, documented at http://numpy.scipy.org.

MV can be imported with the command:
i mport M2

or

fromcdnms2 inport M2
Note that cdms2.MV isan aliasfor cdms2.MV 2.

The command

fromMW2 inport *
allows use of MV 2 commands without any prefix.

Table 2.26 on page 74 lists the constructorsin MV2. All functions return a
transient variable. In most cases the keywords axes, attributes, and id are
available. axesis alist of axis objects which specifies the domain of the
variable. attributesis a dictionary. id isa specia attribute string that serves
astheidentifier of the variable, and should not contain blanks or non-print-

Climate Data Management System 73

CDMS Python Application Programming Interface

ing characters. It is used when the variable is plotted or written to afile.
Sincetheidisjust an attribute, it can also be set like any attribute:

var.id = 'tenperature’

For completeness MV 2 provides access to all the numpy.core.mafunctions.
The functions not listed in the following tables are identical to the corre-
sponding numpy.core.ma function: allclose, allequal, common_fill_value,
compress, create_mask, dot, e, fill_value, filled, get_print_limit, get-
mask, getmaskarray, identity, indices, inner product, isMA, isM aske-
dArray, is mask, isarray, make _mask, make_mask_none, mask_or,
masked, pi, put, putmask, rank, ravel, set_fill_value, set_print_limit,
shape, size. See the documentation at http://numpy.scipy.org for a descrip-
tion of these functions.

Table 2.26 Variable Constructors in module MV2

arrayrange(start, ssop=None, step=1, typecode=None, axis=None,
attributes=None, id=None, dtype=None)

Just like numpy.core.ma.arange() except it returns a variable whose type can
be specfied by the keyword argument typecode. The axis, attribute dictionary,
and string identifier of the result variable may be specified.

Synonym: arange
masked_array(a, mask=None, fill_value=None, axes=None,
attributes=None, id=None)

Same as numpy.core.ma.masked_array but creates a variable instead. If no
axes are specified, the result has default axes, otherwise axesisalist of axis
objects matching a.shape.

masked_object(data, value, copy=1, axes=None, attributes=None,
id=None)

Create variable masked where exactly data equal to value. Create the variable
with the given list of axis objects, attribute dictionary, and string id.

74

Climate Data Management System

MV2 module

Table 2.26 Variable Constructors in module MV2

masked_values(data, value, rtol=1e-05, atol=1e-08, copy=1, axes=None,
attributes=None, id=None)

Constructs avariable with the given list of axes and attribute dictionary, whose
mask is set at those places where

abs (data - value) < atol + rtol * abs (data).

Thisis acareful way of saying that those elements of the data that have value
= value (to within atolerance) are to be treated asinvalid. If datais not of a
floating point type, calls masked object instead.

ones(shape, typecode=Float, axes=None, attributes=None, id=None,
grid=None, dtype=None)

Return an array of all ones of the given length or shape.

reshape(a, newshape, axes=None, attributes=None, id=None, grid=None)
Copy of awith anew shape.

resize(a, new_shape, axes=None, attributes=None, id=None, grid=None)
Return anew array with the specified shape. The original array’stotal size can
be any size.

zer os(shape, typecode=Float, axes=None, attributes=None, id=None,
grid=None, dtype=None)

An array of all zeros of the given length or shape.

The following table describes the MV 2 non-constructor functions. With the
exception of argsort, all functions return atransient variable.

Climate Data Management System 75

CDMS Python Application Programming Interface

Table 2.27 MV2 functions

Definition
argsort(x, axis=-1, fill_value=None)
Return a NumPy array of indices for sorting along a given axis.

asarray(data, typecode=None, dtype=None)

Same as cdms2.createVariable(data, typecode, copy=0). Thisis ashort way of
ensuring that something is an instance of avariable of agiven type before pro-
ceeding, asin

data = asarray(data)
Also see the variable astype() function.

aver age(a, axis=0, weights=None, retur ned=0)

computes the average val ue of the non-masked elements of x along the se-
lected axis. If weightsis given, it must match the size and shape of x, and the
valuereturned is:

sum(a* weights)/sum(weights)

In computing these sums, elementsthat correspond to those that are masked in
X or weights are ignored.

choose(condition, t)

has a result shaped like array condition. t must be a tuple of two arraystl and
t2. Each element of the result is the corresponding element of t1 where condi-
tion istrue, and the corresponding element of t2 where conditionisfalse. The
result is masked where condition is masked or where the selected element is
masked.

concatenate(arrays, axis=0, axisid=None, axisattributes=None)

Concatenate the arrays along the given axis. Give the extended axis theid and
attributes provided - by default, those of the first array.

count(a, axis=None)
Count of the non-masked elementsin a, or along a certain axis.

Climate Data Management System

MV2 module

Table 2.27 MV2 functions

Definition
isM askedVariable(x)
Return true if x is an instance of avariable.

masked_equal(x, value)

x masked where x equals the scalar value For floating point value consider
masked values(x, value) instead.

masked_greater (x, value)
x masked where x > value

masked_greater _equal (x, value)
x masked where x >= value

masked_less(x, value)
x masked where x < value

masked_less equal(x, value)
X masked where x <= value

masked_not_equal(x, value)
x masked where x != value

masked_outside(x, v1, v2)
x with mask of all values of x that are outside [v1,v2]

masked_where(condition, x, copy=1)

Return x as a variable masked where condition istrue. Also masked where x
or condition masked. condition is a masked array having the same shape as x.

maximum(a, b=None)

Compute the maximum valid values of x if y is None; with two arguments,
return the element-wise larger of valid values, and mask the result where either
X ory is masked.

Climate Data Management System 77

CDMS Python Application Programming Interface

Table 2.27 MV2 functions

Definition
minimum(a, b=None)

Compute the minimum valid values of x if y is None; with two arguments,
return the element-wise smaller of valid values, and mask the result where
either x or y is masked.

outer product(a, b)

Return a variable such that result[i, j] = a[i] * b[j]. The result will be masked
where g[i] or b[j] is masked.

power (a, b)
a**b

product(a, axis=0, fill_value=1, dtype=None)
Product of elements along axis using fill_value for missing elements.

repeat(ar, repeats, axis=None)

Return ar repeated repeats times along axis. repeatsis a sequence of length
ar.shapefaxisg] telling how many times to repeat each element.

set_default_fill_value(value type, value)

Set the default fill value for value typeto value. value typeisastring:
"real’,’ conpl ex’,’character’,’integer’,Or’ object’. valueshouldbea
scalar or single-element array.

sort(ar, axis=-1)

Sort array ar elementwise along the specified axis. The corresponding axisin
the result has dummy values.

sum(a, axis=None, fill_value=0, dtype=None)
Sum of elements along a certain axis using fill_value for missing.

take(a, indices, axis=None)

Return a selection of items from a. See the documentation in the NumPy man-
ual.

Climate Data Management System

HorizontalGrid

Table 2.27 MV2 functions

Definition
transpose(ar, axes=None)

Perform areordering of the axes of array ar depending on the tuple of indices
axes;thedefault is to reverse the order of the axes.

where(condition, X, y)
X where condition istrue, y otherwise.

2.10 HorizontalGrid

A Horizontal Grid represents a latitude-longitude coordinate system. In
addition, it optionally describes how lat-lon space is partitioned into cells.
Specifically, a Horizontal Grid:

e consists of alatitude and longitude coordinate axis.
* may have associated boundary arrays describing the grid cell boundaries,
* may optionally have an associated logical mask.

CDM S supports several types of Horizontal Grids:

Table 2.28

Grid Type Description

RectGrid Associated latitude an longitude are 1-D axes, with strictly
monotonic values.

CurveGrid Latitude and longitude are 2-D coordinate axes (Axis2D).

GenericGrid Latitude and longitude are 1-D auxiliary coordinate axis
(AuxAxislD)

Climate Data Management System 79

CDMS Python Application Programming Interface

Table 2.29 HorizontalGrid Internal Attributes

Type Name Definition

Dictionary attributes External attribute dictionary.

String id The grid identifier.

Dataset or parent The dataset or file which contains the grid.
CdmsFile

Tuple shape The shape of the grid, a 2-tuple.

Table 2.31 on page 81 describes the methods that apply to all types of Hori-
zontal Grids. Table 2.32 on page 85 describes the additional methods that
are unique to RectGrids.

Table 2.30 RectGrid Constructors

cdms2.createRectGrid(lat, lon, order, type=" generic",
mask=None)

Create agrid not associated with afile or dataset.
See Table 2.2 on page 31.

CdmsFile.createRectGrid(id, lat, lon, order, type=" generic",
mask=None)

Create agrid associated with afile. See Table 2.14 on page 53.

Dataset.createRectGrid(id, lat, lon, order, type=" generic",
mask=None)

Create agrid associated with a dataset. See Table 2.25 on page 71.

cdms2.createGaussianGrid(nlats, xorigin=0.0, order="yx")
See Table 2.2 on page 31.

Climate Data Management System

HorizontalGrid

Table 2.30 RectGrid Constructors

cdms2.createGenericGrid(latArray, lonArray, latBounds=None,
lonBounds=None, order="yx" , mask=None)

See Table 2.2 on page 18.

cdms2.createGlobalM eanGrid(grid)
See Table 2.2 on page 18.

cdms2.createRectGrid(lat, lon, order, type=" generic",
mask=None)

See Table 2.2 on page 18.

cdms2.createUniformGrid(startL at, nlat, deltal at, startL on, nlon,

deltaL on, order="yx", mask=None)
See Table 2.2 on page 18.

cdms2.createZonal Grid(grid)
See Table 2.2 on page 18.

Table 2.31 HorizontalGrid Methods

Type Definition

Horizontal- clone()

Grid Return atransient copy of the grid.

Axis getAxis(Integer n)
Get the n-th axis.
niseither O or 1.

Climate Data Management System

81

CDMS Python Application Programming Interface

Table 2.31 HorizontalGrid Methods

Type

Tuple

Definition
getBounds()

Get the grid boundary arrays.

Returns atuple (latitudeArray, longitudeArray), where lati-
tudeArray isa NumPy array of latitude bounds, and similarly
for longitudeArray.The shape of latitudeArray and longitude-
Array depend on the type of grid:

e for rectangular grids with shape (nlat, nlon), the boundary
arrays have shape (nlat,2) and (nlon,2).

e for curvilinear grids with shape (nx, ny), the boundary
arrays each have shape (nx, ny, 4).

e for generic grids with shape (ncell,), the boundary arrays
each have shape (ncell, nvert) where nvert is the maximum
number of vertices per cell.

For rectilinear grids: If no boundary arrays are explicitly
defined (in the file or dataset), the result depends on the auto-
Bounds mode (see cdms2.setAutoBounds) and the grid clas-
sification mode (see cdms2.setClassifyGrids). By defaullt,
autoBounds mode is enabled, in which case the boundary
arrays are generated based on the type of grid. If disabled, the
return value is (None,None).

For rectilinear grids: The grid classification mode specifies

how the grid type isto be determined. By default, the grid type
(Gaussian, uniform, etc.) is determined by calling grid.classi-
fylnFamily. If the modeis’off’ grid.getTypeisused instead

Axis

getL atitude()
Get the latitude axis of this grid.

AXis

getL ongitude()
Get the latitude axis of this grid.

82

Climate Data Management System

HorizontalGrid

Table 2.31 HorizontalGrid Methods

Type

Array

Definition
getM ask()

Get the mask array of thisgrid, if any.

Returns a 2-D NumPy array, having the same shape as the
grid. If the mask is not explicitly defined, the return valueis
None.

Array

getM esh(self, transpose=None)

Generate a mesh array for the meshfill graphics method.

If transpose is defined to atuple, say (1,0), first transpose
latbounds and lonbounds according to the tuple, in this case
(1,0,2).

None

setBounds(latBounds, lonBounds, per sistent=0)
Set the grid boundaries.

latBoundsis a NumPy array of shape (n,2), such that the
boundaries of the kth axis value are [latBoundgk,0] | at-
Boundgk,1]].

lonBounds is defined similarly for the longitude array.

Note: By default, the boundaries are not written to the file or
dataset containing the grid (if any). This allows bounds to be

set on read-only files, for regridding. If the optional argument
persistent is set to 1, the boundary array is written to the file.

None

setM ask(mask, persistent=0)

Set the grid mask. If persistent==1, the mask values are writ-
ten to the associated file, if any. Otherwise, the mask is associ-
ated with the grid, but no 1/0O is generated.

mask is a two-dimensional, Boolean-valued NumPy array,
having the same shape as the grid.

Climate Data Management System 83

CDMS Python Application Programming Interface

Table 2.31 HorizontalGrid Methods

Type Definition

Horizontal- subGridRegion(latl nterval, lonlnterval)
i Create anew grid corresponding to the coordinate region
defined by latinterval, loninterval.

latInterval and loninterval are the coordinate intervals
for latitude and longitude, respectively.

Each interval is atuple having one of the forms:

(xy)

(x,y,indicator)
(x,y,indicator,cycle)
None

where x and y are coordinates indicating the interval
[x,y), and:

indicator is atwo-character string, where the first char-
acter is'c' if theinterval is closed on the left, ‘o' if open,
and the second character has the same meaning for the
right-hand point. (Default: 'co’)

If cycleis specified, the axis is treated as circular with
the given cycle value. By default, if grid.isCircular() is
true, the axisistreated as circular with a default value of
360.0.

An interval of None returns the full index interval of the
axis.

If amask is defined, the subgrid also has a mask correspond-
ing to the index ranges.

Note: The result grid is not associated with any file or dataset.

Climate Data Management System

HorizontalGrid

Table 2.31 HorizontalGrid Methods

Type Definition

Transient- toCurveGrid(gridid=None)

CurveGrid convert to acurvilinear grid. If the grid is already curvilinear,
acopy of the grid object is returned.
gridid isthe string identifier of the resulting curvilinear grid
object. If unspecified, the grid ID is copied.
Note: This method does not apply to generic grids.

Transient- toGenericGrid(gridid=None)

GenericGrid

Convert to ageneric grid. If the grid is already generic, acopy
of the grid is returned.

gridid isthe string identifier of the resulting curvilinear grid
object. If unspecified, the grid ID is copied.

Table 2.32 RectGrid Methods, additional to HorizontalGrid Methods

String getOrder()
Get the grid ordering, either “yx” if latitudeis the first axis, or
“xy” if longitude isthe first axis.

String getType()

(LT "

Get the grid type, either “gaussian”, “uniform”, “equalarea’,
or “generic”.

Climate Data Management System 85

CDMS Python Application Programming Interface

Table 2.32 RectGrid Methods, additional to HorizontalGrid Methods

(Array,Arra
y)

getWeights()

Get the normalized area weight arrays, as atuple (latWeights,
lonWeights). It is assumed that the latitude and longitude axes
are defined in degrees.

The latitude weights are defined as:

| at Wei ghts[i] = 0.5 * abs(sin(latBounds[i+1]) -
sin(l at Bounds[i]))

The longitude weights are defined as:

| onWei ghts[i] = abs(lonBounds[i +1] -
| onBounds[i])/360.0

For aglobal grid, the weight arrays are normalized such that
the sum of the weightsis 1.0

Example: Generate the 2-D weights array, such that
weightd[i.j] isthe fractional areaof grid zonef[i,j].
fromcdns2 i nport MW

latwts, lonwts = grid. get Wi ghts()
wei ghts = M. out erproduct (Il atwts, |onws)

Also see the function area_weightsin module
pcmdi.weighting.

None

setType(gridtype)
Set the grid type.

gridtypeisone of “gaussian”, “uniform”, “equalarea’, or
“generic”.

86

Climate Data Management System

Variable

Table 2.32 RectGrid Methods, additional to HorizontalGrid Methods

RectGrid subGrid((latSart,latSop),(lonSart,lonSop))

Create anew grid, with latitude index range [latStart : latStop]
and longitude index range [lonStart : lonStop]. Either index
range can aso be specified as None, indicating that the entire
range of the latitude or longitude is used. For example,

newgrid = ol dgrid.subGid(None, (lonStart, |onStop))

createsnewgr i d corresponding to al latitudes, and index range
[lonStart:lonStop] of ol dgri d.

If amask is defined, the subgrid also has a mask correspond-
ing to the index ranges.

Note: The result grid is not associated with any file or dataset.

RectGrid transpose()

Create anew grid, with axis order reversed. The grid mask is
also transposed.

Note: The result grid is not associated with any file or dataset.

2.11 Variable

A Variableis amultidimensional data object, consisting of:

e amultidimensional data array, possibly masked,
e acollection of attributes
e adomain, an ordered tuple of CoordinateAxis objects.

A Variablewhichiscontained in a Dataset or CdmsFileis caled apersistent
variable. Setting aslice of a persistent Variable writes datato the Dataset or
file, and referencing a Variable slice reads data from the Dataset. Variables
may also be transient, not associated with a Dataset or CdmsFile.

Climate Data Management System 87

CDMS Python Application Programming Interface

Variables support arithmetic operations. The basic Python operators are +,-
J1.** | abs, and sgrt, together with the operations defined in the MV 2 mod-
ule. The result of an arithmetic operation is atransient variable, that is, the
axisinformation is transferred to the result.

The methods subRegion and subSlice return transient variables. In addition,
atransient variable may be created with the cdms2.createVariable method.
The ves and regrid2 module methods take advantage of the attribute,
domain, and mask information in atransient variable.

Table 2.33 Variable Internal Attributes

Type Name Definition

Dictionary attributes External attribute dictionary.

String id Variable identifier.

String name_in file The name of the variablein the file or files

which represent the dataset. If different from
id, the variable is ‘aliased’.

Dataset or parent The dataset or file which contains the variable.
CdmsFile
Tuple shape The length of each axis of the variable.

88

Climate Data Management System

Variable

Climate Data Management System

89

CDMS Python Application Programming Interface

Table 2.34 Variable Constructors

CdmsFile.createVariable(String id, String datatype, List axesOr -
Grids)

Create a Variable in a CdmsFile.

id isthe name of the variable.
datatype is the NumPy typecode, for example, numpy.float.

axesOrGridsisalist of Axisand/or Grid objects, on which the variable
is defined. Specifying arectilinear grid is equivalent to listing the grid
latitude and longitude axes, in the order defined for the grid. Note: this
argument can either be alist or atuple. If the tuple form is used, and
there is only one element, it must have afollowing comma, e.g.:
(axisobj,).

Climate Data Management System

Variable

Table 2.34 Variable Constructors

cdms2.createVariable(array, typecode=None, copy=0, mask=None,
fill_value=None, grid=None, axes=None, attributes=None,
id=None, copyaxes=1, dtype=None, order=None)

Create atransient variable, not associated with afile or dataset.
array isthe data values: a Variable, masked array, or NumPy array.

typecodeisthe numpy typecode of the array. Defaults to the typecode of array.
Note: in Version 5, this argument is superseded by dtype.

copyisaninteger flag: if 1, the variableis created with a copy of the array, if O
the variable data is shared with array.

mask is an array of integers with value O or 1, having the same shape as array.
array elements with a corresponding mask value of 1 are considered ‘invalid’,
and are not used for subsequent NumPy operations. The default mask is
obtained from array if present, otherwise is None.

fill_valueisthe missing value flag. The default is obtained from array if possi-
ble, otherwiseis set to 1.0e20 for floating point variables, O for integer-valued
variables.

gridisarectilinear grid object.

axesis atuple of axis objects. By default the axes are obtained from array if
present. Otherwise for a dimension of length n, the default axis has values[0.,
1., ..., double(n)].

attributesis a dictionary of attribute values. The dictionary keys must be
strings. By default the dictionary is obtained from array if present, otherwise
is empty.

id isthe string identifier of the variable. By default the id is obtained from
array if possible, otherwise is set to ’variable n’ for some integer n.

copyaxesis an integer flag: if 1, and the axes argument is specified, the vari-
ableis created with copies of the axes in the variable domain. If 0, the domain
includes the axes themselves.

dtypeis anumpy datatype object or character code. Commonly used character
codes are ‘f’ for single-precision float, ‘d’ for double-precision float, and ‘I’
for single-precision integer. See the numpy documentation for a complete list
of character codes. New in Version 5.

If order is‘Fortran’, the resulting array will be in Fortran order, otherwisein
‘C’ order. New in Version 5.

Climate Data Management System 91

CDMS Python Application Programming Interface

Table 2.35 Variable Methods

Type
Variable

Variable

None

Variable

Variable

Definition
tvar =var[i:j, m:n]

Read a dlice of data from the file or dataset, resulting in atran-
sient variable. Singleton dimensions are ‘ squeezed’ out. Data
isreturned in the physical ordering defined in the dataset. The
forms of the slice operator are listed in Table 2.36 on

page 101.

var[i:j, m:n] = array

Write a slice of data to the external dataset. The forms of the
slice operator arelisted in Table 2.21 on page 32. (Variablesin
CdmsFiles only)

tvar = var(selector)

Calling a variable as a function reads the region of data

defined by the selector. The result is atransient variable,
unlessraw=1 keyword is specified. ‘See “Selectors’ on

page 102.

assignValue(Array ar)

Write the entire data array. Equivalent to var[:] = ar. (Variables
in CdmsFiles only).

astype(typecode)

Cast the variable to a new datatype. Typecodes are as for
MV 2, numpy.core.ma, and NumPy modules.

clone(copyData=1)
Return a copy of atransient variable.

If copyDatais 1 (the default) the variable dataiis copied as
well. If copyDatais 0, the result transient variable shares the
original transient variable’s data array.

92 Climate Data Management System

Variable

Table 2.35 Variable Methods

Type

Transient
Variable

AXxis

List

Integer

Definition
crossSectionRegrid(newL evel, newL atitude,
method="1og" , missing=None, order=None)

Return alat/level vertical cross-section regridded to a new set
of latitudes newLatitude and levels newlLevel. The variable
should be a function of latitude, level, and (optionally) time.

newLevel is an axis of the result pressure levels.
newLatitude is an axis of the result latitudes.

method is optional, either "I og" to interpolate in the log of
pressure (default), or "I i near " for linear interpolation.

missing is amissing datavalue. The default is var.getMissing()

order isan order string such as "tzy" or "zy". The default is
var.getOrder()

See also: regrid2, pressureRegrid.

getAxis(n)
Get the n-th axis.
nisan integer.

getAxisl ds()
Get alist of axisidentifiers.

getAxislndex(axis_spec)

Return theindex of the axis specificed by axis_spec. Return -1
if no match.

axis_spec is a specification as defined for getAxisList

Climate Data Management System 93

CDMS Python Application Programming Interface

Table 2.35 Variable Methods

Type

List

List

Definition
getAxisL ist(axes=None, omit=None, order=None)

Get an ordered list of axis objectsin the domain of the vari-
able..

If axesis not None, include only certain axes. Otherwise axes
isalist of specifications as described below. Axes are returned
in the order specified unless the order keyword is given.

If omit is not None, omit those specified by an integer dimen-
sion number. Otherwise omit isalist of specifications as
described below.

order isan optional string determining the output order.

Specifications for the axes or omit keywords are alist, each
element having one of the following forms:

e aninteger dimension index, starting at O.

* astring representing an axisid or one of the strings
"time’, 'latitude’, 'lat’, 'longitude’, 'lon’,
‘lev’ Or 'level’.

e afunction that takes an axis as an argument and returns a
value. If the value returned is true, the axis matches.

e anaxisaobject; will matchif it isthe same object as axis.

order can be a string containing the characters
t,x,y,z,or-.If adash (’-") isgiven, any elements of the
result not chosen otherwise are filled in from left to right with
remaining candidates.

getAxisListl ndex(axes=None, omit=None,
order=None)

Return alist of indices of axis objects. Arguments are as for
getAxisList.

94

Climate Data Management System

Variable

Table 2.35 Variable Methods

Type

List

Horizontal -
Grid

AXxis

AXis

AXxis

Various

Definition
getDomain()

Get the domain. Each element of the list isitself atuple of the
form

(axis,start,length,true_I ength)

where axisis an axis object, start is the start index of the
domain relative to the axis object, length is the length of the
axis, and true_length is the actual number of (defined) pointsin
the domain.

See also: getAxisList.

getGrid()

Return the associated grid, or None if the variableis not grid-
ded.

getL atitude()
Get the latitude axis, or None if not found.

getLevel()
Get the vertical level axis, or None if not found.

getL ongitude()
Get the longitude axis, or None if not found.

getMissing()
Get the missing data value, or None if not found.

Climate Data Management System 95

CDMS Python Application Programming Interface

Table 2.35 Variable Methods

Type

String

List

AXis

Definition
getOrder()

Get the order string of a spatio-temporal variable. The order
string specifies the physical ordering of the data. It isastring
of characters with length equal to the rank of the variable, indi-
cating the order of the variable'stime, level, latitude, and/or
longitude axes. Each character is one of:

't': time

'Z': vertical level

'y: latitude

'X": longitude

'-': the axisis not spatio-temporal.

Example: A variable with ordering “tzyx” is 4-dimensional,
where the ordering of axesis (time, level, latitude, longitude).

Note: The order string is of the form required for the order
argument of aregridder function.

getPaths(*intervals)

Get thefile paths associated with the index region specified by
intervals.

intervalsisalist of scalars, 2-tuples representing [i,j), slices,
and/or Ellipses. If no argument(s) are present, al file paths
associated with the variable are returned.

Returns alist of tuples of the form (path,slicetuple), where
path is the path of afile, and slicetupleisitself atuple of
dlices, of the same length as the rank of the variable, represent-
ing the portion of the variable in the file corresponding to
intervals.

Note: This function is not defined for transient variables.

getTime()
Get the time axis, or None if not found.

96 Climate Data Management System

Variable

Table 2.35 Variable Methods

Type

Integer

Transient
Variable

I nteger

Definition
len(var)

Thelength of thefirst dimension of thevariable. If the variable
is zero-dimensional (scalar), alength of O is returned.

Note: .Size returns the total number of elements.

pressureRegrid (newL evel, method="log" , miss-
ing=None, order=None)

Return the variable regridded to a new set of pressure levels
newLevel. The variable must be afunction of latitude, longi-
tude, pressure level, and (optionally) time.

newLevel is an axis of the result pressure levels.

method is optional, either "I og" to interpolate in the log of
pressure (default), or "I i near " for linear interpolation.

missing is amissing datavalue. The default is var.getMissing()

order is an order string such as "tzyx" or "zyx". The default is
var.getOrder()

See also: regrid2, crossSectionRegrid.

rank()
The number of dimensions of the variable.

Climate Data Management System 97

CDMS Python Application Programming Interface

Table 2.35 Variable Methods

Type

Transient
Variable

None

None

None

Definition

regrid (togrid, missing=None, or der=None,
mask=None)

Return the variable regridded to the horizontal grid togrid.

missing is a Float specifying the missing data value. The
default is 1.0e20.

order is astring indicating the order of dimensions of the
array. It has the form returned from variable.getOrder (). For
example, the string “tzyx” indicates that the dimension order
of array is (time, level, latitude, longitude). If unspecified, the
function assumes that the last two dimensions of array match
the input grid.

mask isaNumPy array, of datatype Integer or Float, consisting
of ones and zeros. A value of 0 or 0.0 indicates that the corre-
sponding data value isto be ignored for purposes of regrid-
ding. If maskistwo-dimensional of the same shape as the
input grid, it overrides the mask of the input grid. If the mask
has more than two dimensions, it must have the same shape as
array. In this case, the missing data valueis also ignored. Such
an n-dimensional mask is useful if the pattern of missing data
varies with level (e.g., ocean data) or time.

Note: If neither missing or mask is set, the default mask is
obtained from the mask of the array if any.

See also: crossSectionRegrid, pressureRegrid.

setAxis(n, axis)

Set the n-th axis (0-origin index) of to a copy of axis.
setAxisList(axislist)

Set all axes of the variable. axidist isalist of axis objects.
setMissing(value)

Set the missing value.

Climate Data Management System

Variable

Table 2.35 Variable Methods

Type

Integer

Variable

Definition
.Size
Number of elements of the variable.

subRegion(*region, time=None, level=None, lati-
tude=None, longitude=None, squeeze=0, raw=0)

Read a coordinate region of data, returning a transient vari-
able. A region is a hyperrectangle in coordinate space.

region is an argument list, each item of which specifies an
interval of acoordinate axis. The intervals are listed in the
order of the variable axes. If trailing dimensions are omitted,
all values of those dimensions are retrieved. If an axisiscircu-
lar (axis.isCircular () istrue) or cycleis specified (see below),
then datawill be read with wraparound in that dimension.
Only one axis may be read with wraparound. A coordinate
interval has one of the forms listed in Table 2.37 on page 101.
Also see axis.maplntervalExt.

The optional keyword argumentstime, level, latitude, and lon-
gitude may also be used to specify the dimension for which the
interval applies. Thisis particularly useful if the order of
dimensions is not known in advance. An exception is raised if
a keyword argument conflicts with a positional region argu-
ment.

The optional keyword argument squeeze determines whether
or not the shape of the returned array contains dimensions
whose length is 1; by default this argument is 0, and such
dimensions are not 'squeezed out’.

The optional keyword argument raw specifies whether the
return object is avariable or amasked array. By default, atran-
sient variable is returned, having the axes and attributes corre-
sponding to the region read. If raw=1, an ma masked array is
returned, equivalent to the transient variable without the axis
and attribute information.

Climate Data Management System 99

CDMS Python Application Programming Interface

Table 2.35 Variable Methods

Type

Variable

String

Definition
subSlice(* specs, time=None, level=None, lati-
tude=None, longitude=None, squeeze=0, raw=0)

Read a slice of data, returning atransient variable. Thisisa
functional form of the dlice operator [] with the squeeze option
turned off.

specsisan argument list, each element of which specifies a
slice of the corresponding dimension. There can be zero or
more positional arguments, each of the form:

(a) asingle integer n, meaning slice(n, n+1)

(b) an instance of the slice class

(c) atuple, which will be used as arguments to create adice
(d) :*, which means a slice covering that entire dimension

(e) Ellipsis (...), which meansto fill the slice list with":’ leav-
ing only enough room at the end for the remaining positional
arguments

(f) a Python slice object, of the form slice(i,j,k)

If there are fewer slices than corresponding dimensions, all
values of the trailing dimensions are read.

The keyword arguments are defined as in subRegion.

There must be no conflict between the positional arguments
and the keywords.

In (a)-(c) and (f), negative numbers are treated as offsets from
the end of that dimension, asin normal Python indexing.

typecode() or variable.dtype.char
The NumPy datatype identifier.

Example: Get aregion of data.

Variabletaisafunction of (time, latitude, longitude). Read data correspond-
ing to all times, latitudes -45.0 up to but not including +45.0, longitudes 0.0
through and including longitude 180.0:

100

Climate Data Management System

Variable

data = ta.subRegion(’':",

(-45.0,45.0,’ co’), (0.0,

or equivalently:

data = ta.subRegion(latitude=(-45.0,45.0,"co’),
180. 0)

Read all datafor March, 1980:

data = ta.subRegion(tinme=("1980-3",'1980-4','co0’'))

Table 2.36 Variable Slice Operators

180. 0))

| ongi t ude=(0. 0,

[i] Theith element, zero-origin indexing.

[i:]] Theith element through, but not including, element

[i:] Theith element through the end

[:1] The beginning element through, but not including, element j
M The entire array

[i::K] Every kth element

[izj, m:n] Multidimensional slice

[i, ..., m] (Ellipsis) All dimensions between those specified.

[-1] Negative indices ‘wrap around'. -1 is the last element.

Table 2.37 Index and Coordinate Intervals

Interval Definition Example
X single point, such that axigi]==x 180.0
In general x isascalar. If theaxisisatime cdtime.rel-
axis, x may also beacdtimerelativetimetype, | time(48,” hour
component time type, or string of the form ssince 1980-
'yyyy-mm-dd hh:mi:ss’ (wheretrailing fields | 17)
of the string may be omitted. '1980-1-3
(x,y) indicesi such that x <= axig[i] <=y (-180,180)

Climate Data Management System

101

CDMS Python Application Programming Interface

Table 2.37 Index and Coordinate Intervals

Interval Definition Example

(x,y,'ca) x<=axigi]<y (-90,90,'cc))
The third item is defined asin maplinterval.

(x,y,'co',cy | x<=axigi] <y, with wraparound (180, 180,

cle) Note: It is not necesary to specify the cycle of | 'co’, 360.0)

acircular longitude axis, that is, for which
axis.isCircular() istrue.

slice(i,j,k) | sliceobject, equivalenttoi:j:k inasliceopera- | slice(1,10)
tor. Refersto theindicesi, i+k, i+2k, ... up to dlice(,-1)
but not including index j. If i is not specified iy

. : L e reverses the
orisNoneit defaultsto 0. If j isnot specified | girection of
or isNoneit defaults to the length of the axis. | {he axis.

The stride k defaults to 1. k may be negative.

all axis values of one dimension

Ellipsis all values of al intermediate axes

2111 Selectors

A selector is aspecification of aregion of datato be selected from a
variable. For example, the statement

X = v(time='1979-1-1', |evel =(1000.0, 100.0))

means ‘ select the values of variable v for time’1979-1-1' and levels 1000.0
to 100.0 inclusive, setting x to the result.’” Selectors are generally used to
represent regions of space and time.

Theform for using a selector is

result = v(s)

wherev isavariable and s isthe selector. An equivalent formis

result = f(‘varid, s)

wheret isafile or dataset, and ‘ vari d’ isthestring ID of avariable.

102 Climate Data Management System

Variable

A selector consists of alist of selector components. For example, the selec-

tor

time="1979-1-1', |evel =(1000. 0, 100. 0)

has two components: ti me=" 1979-1-1' , and | evel =(1000. 0, 100. 0) . This
illustrates that selector components can be defined with keywords, using the

form:;

keywor d=val ue

Note that for the keywordsti me, 1evel, Iatitude, and! ongit ude, the selec-
tor can be used with any variable. If the corresponding axisis not found, the
selector component isignored. Thisisvery useful for writing general pur-
pose scripts. Therequi red keyword overrides this behavior. These key-
words take values that are coordinate ranges or index ranges as defined in
Table 2.37 on page 101.

The following keywords are available:

Table 2.38 Selector keywords

Keyword
axisid

grid

latitude

| evel

| ongi tude

or der

raw

Description

Restrict theaxiswith ID axisid to
avalue or range of values.

Regrid the result to the grid.

Restrict latitude valuesto avalue
or range. Short form: lat

Restrict vertical levelsto avalue
or range. Short form: lev
Restrict longitude valuesto a
value or range. Short form: lon
Reorder the result.

Return a masked array

(ma.MaskedArray) rather than a
transient variable.

Value
See Table 2.37 on page 101

Grid object
See Table 2.37 on page 101

See Table 2.37 on page 101
See Table 2.37 on page 101
Order string, e.g., “tzyx”

0: return atransient variable

(default); =1: return a
masked array.

Climate Data Management System

103

CDMS Python Application Programming Interface

Table 2.38 Selector keywords

Keyword Description Value

required Require that the axis IDs be List of axisidentifiers.
present.

squeeze Remove singleton dimensions 0: leave singleton dimen-
from the result. sions (default); 1: remove

singleton dimensions.

time Redtrict timevaluesto avalueor See Table 2.37 on page 101

range.

Another form of selector componentsis the positional form, where the com-
ponent order corresponds to the axis order of avariable. For example:

X9 = hus((’ 1979-1-1",1979-2-1"), 1000. 0)

reads data for therange (* 1979-1-1',* 1979-2-1') of thefirst axis, and coor-
dinate value 1000. 0 of the second axis. Non-keyword arguments of the
form(s) listed in Table 2.37 on page 101 are treated as positional. Such
selectors are more concise, but not as general or flexible as the other types
described in this section.

Selectors are objects in their own right. This means that a selector can be
defined and reused, independent of a particular variable. Selectors are con-
structed using the cdms2.selectors.Selector class. The constructor takes an
argument list of selector components. For example:

fromcdns2. sel ectors inport Sel ector

sel = Selector(tinme=(’1979-1-1","1979-2-1"), |evel =1000.)

x1 vl(sel)
X2 v2(sel)

For convenience CDMS provides several predefined selectors, which can
be used directly or can be combined into more complex selectors. The
selectorstime, Ievel, latitude, |ongitude, andrequired areequivalent to
their keyword counterparts. For example:

fromcdnms2 inport tine, |evel
x = hus(time(’'1979-1-1",'1979-2-1"), |evel (1000.))

and

104

Climate Data Management System

Variable

X = hus(time=(’ 1979-1-1','1979-2-1'), | evel =1000.)

are equivalent. Additionally, the predefined selectorsi atit udeslice, 1on-
gitudeslice, levelslice,andtineslice take arguments (startindex, stopin-
dex|, stride]):

fromcdnms2 inport tineslice, levelslice
x = v(tineslice(0,2), levelslice(16,17))

Finally, a collection of selectorsis defined in module cdut i I . r egi on:

fromecdutil.region inport *

NH=Nor t her nHem spher e=donmi n(l atitude=(0., 90.)
SH=Sout her nHemi spher e=domai n(l atitude=(-90.,0.))
Tropi cs=domai n(l ati tude=(-23. 4, 23.4))

NPZ=AZ=Ar ct i cZone=donai n(| ati t ude=(66. 6, 90.))
SPZ=AAZ=Ant ar ct i cZone=domai n(l atitude=(-90., -66.6))

Selectors can be combined using the & operator, or by refining them in the
cal:

fromcdns2. sel ectors inport Selector
fromcdnms2 inport |eve

sel 2 = Selector(tine=('1979-1-1","1979-2-1"))
sel 3 = sel2 & |l evel (1000.0)

x1 hus(sel 3)

X2 hus(sel 2, |evel =1000. 0)

211.2 Selector examples

CDMS provides a variety of waysto select or slice data. In the fol-
lowing examples, variable ‘hus' is contained in file sample.nc, and isa
function of (time, level, latitude, longitude). Time values are monthly start-
ing at 1979-1-1. There are 17 levels, the last level being 1000.0. The name
of thevertical level axisis'plev’. All the examples select thefirst two times
and the last level. The last two examples remove the singleton level dimen-
sion from the result array.

i mport cdns2

f = cdns2. open(’ sanple.nc’)
hus = f.variabl es[’ hus’]

Keyword sel ection
X = hus(tinme=('1979-1-1","1979-2-1"), |evel =1000.)

Climate Data Management System 105

CDMS Python Application Programming Interface

Interval indicator (see maplnterval Ext)
X = hus(tinme=('1979-1-1","1979-3-1",’co’), |evel =1000.)

Axis ID (plev) as a keyword
X = hus(tinme=('1979-1-1","1979-2-1"), plev=1000.)

Positiona
X9 = hus((’1979-1-1",'1979-2-1"), 1000. 0)

Predefined selectors
fromcdns2 inport tine, |eve
X = hus(tinme(’1979-1-1","1979-2-1"), level (1000.))

fromcdnms2 inport tineslice, levelslice
x = hus(tineslice(0,2), levelslice(16,17))

Call file as a function
x = f("hus’, time=(’1979-1-1",'1979-2-1"), |evel =1000.)

Python slices
= hus(tinme=slice(0,2), level=slice(16,17))

x

Sel ector objects

fromcdns2. sel ectors inport Selector

sel = Selector(tine=('1979-1-1","1979-2-1"), |evel =1000.)
x = hus(sel)

sel 2 Sel ector(tinme=('1979-1-1","1979-2-1"))
sel 3 = sel2 & | evel (1000.0)

x = hus(sel 3)

x = hus(sel 2, |evel =1000. 0)

Squeeze singleton dinmension (level)
hus[0: 2, 16]
hus(time=(’1979-1-1",'1979-2-1"), |evel =1000., squeeze=1)

X

f.close()

2.12 Examples

In this example, two datasets are opened, containing surface air tem-
perature (‘tas') and upper-air temperature (‘ta’) respectively. Surface air
temperature is afunction of (time, latitude, longitude). Upper-air tempera-
tureisafunction of (time, level, latitude, longitude). Timeis assumed to

106 Climate Data Management System

Examples

© ©

®

have arelative representation in the datasets (e.g., with units “months since
basetime”).

Datais extracted from both datasets for January of the first input year
through December of the second input year. For each time and level, three
guantities are calculated: slope, variance, and correlation. The results are
written to a netCDF file. For brevity, the functions corrCoefSlope and
removeSeasonal Cycle are omitted.

i nport cdns2
i nport W2 as W

Cal cul ate variance, slope, and correlation of

surface air tenperature with upper air tenperature

by level, and save to a netCDF file. 'pathTa' is the |ocation of
the file containing ta, 'pathTas’ is the file with contains tas.
Data is extracted fromJanuary of yearl through Decenber of year2.
def ccSl opeVari anceBySeasonFi |t Net (pat hTa, pat hTas, nont hl, nont h2):

Open the files for ta and tas
fta = cdnms2.open(pathTa)
ftas = cdns2. open(pat hTas)

Get upper air tenperature
taCbj = fta['ta']
levs = taObj.getlLevel ()

Get the surface tenperature for the closed interval [tinel,tinme2]
tas = ftas('tas’, time=(nmonthl, nonth2,’cc’))

Allocate result arrays

newaxes = talbj.get AxisList(omt="tine")

newshape = tuple([len(a) for a in newaxes])

cc = M. zeros(newshape, typecode=MW. Fl oat, axes=newaxes, id='correlation’)
b = M. zeros(newshape, typecode=W. Fl oat, axes=newaxes, id="slope’)

v = M. zeros(newshape, typecode=M. Fl oat, axes=newaxes, id='variance’)
Renove seasonal cycle fromsurface air tenperature

tas = renoveSeasonal Cycl e(tas)

For each level of air tenperature, renpve seasonal cycle
fromupper air tenperature, and calculate statistics
for ilev in range(len(levs)):

ta = taQoj (ti me=(nonthl, nonth2,’cc’), \

I evel =slice(ilev, ilev+l), squeeze=1)
ta = renmpveSeasonal Cycl e(ta)
cc[ilev], b[ilev] = corrCoefSlope(tas ,ta)

v[ilevl] = MW.sun(ta**2)/(1.0*ta.shape[0])

Wite slope, correlation, and variance vari abl es
= cdnms2. open(’ CC_B V_ALL.nc’,’ W)

.title = "filtered

.wite(b)

.write(cc)

.write(v)

.close()

——h —h —h —h o

Climate Data Management System 107

CDMS Python Application Programming Interface

if

__name__=="__main__":
pat hTa = '/ pcndi / cdns/ sanpl e/ ccnBanpl e_ta. xm ’
pathTas = '/ pcndi / cdnms/ sanpl e/ ccnBanpl e_t as. xml ’
Process Jan80 through Dec81

ccSl opeVari anceBySeasonFi | t Net (pat hTa, pat hTas,’ 80-1",’ 81-12")

Notes:

1.

Two modules are imported, cdms2, and MV2. MV 2 implements arithmetic
functions.

tatoj isafile(persistent) variable. At this point, no data has actually been read.
This happens when thefile variableis sliced, or when the subRegion functionis
caled. | evs isan axis.

Calling the file like a function reads data for the given variable and time range.
Note that mont h1 and nont h2 are time strings.

In contrast to t atbj , the variablescc, b, and v aretransient variables, not asso-
ciated with afile. The assigned names are used when the variables are written.

Another way to read dataisto call the variable as afunction. The squeeze
option removes singleton axes, in this case the level axis.

Write the data. Axisinformation iswritten automatically.

Thisisthe main routine of the script. pat hTa and pat hTas pathnames. Datais
processed from January 1980 through December 1981.

In the next example, the pointwise variance of avariable over timeis calcu-
lated, for al timesin a dataset. The name of the dataset and variable are
entered, then the variance is calculated and plotted viathe ves module.

#!/usr/ bin/env python

#

Cal cul ates gridpoint total variance
froman array of interest

#

i nport cdns2
from W2 inport *

Wait for return in an interactive w ndow
def pause():

print "Hit return to continue: ’
line = sys.stdin.readline()

Cal cul ate poi ntwi se variance of variable over tine
Returns the variance and the nunber of points

for which the data is defined, for each grid point
def cal cVar(x):

108

Climate Data Management System

Examples

Check that the first axis is a tinme axis
firstaxis = x.get Axi s(0)
if not firstaxis.isTine():

raise 'First axis is not time, variable:’, x.id

n = count (X, 0)

SUNXX = sum(x*x)

sunx = sumx)

variance = (n*sumxx - (sunx * sunx))/(n * (n-1.))

return variance, n

if _name__=="_main__":
i nport vcs, sys

print 'Enter dataset path [/pcndi/cdnms/obs/erbs_nmo.xm]: *,
path = string.strip(sys.stdin.readline())
if path=="": path="/pcndi/cdnms/obs/erbs_no.xm"’

Open the dataset
dat aset = cdns2. open(pat h)

Select a variable fromthe dataset
print 'Variables in file:’,path
varnanmes = dataset.vari abl es. keys()
var names. sort ()
for varnane in varnanes:
var = dataset.vari abl es[var nane]
if hasattr(var,’long_nane’'):
| ong_nanme = var.|ong_nane
elif hasattr(var,'title’):
long_nanme = var.title
el se:
long_nane ="'?’
print ' % 10s: 9%’ % varnane, | ong_nane)
print 'Select a variable: ',

varname = string.strip(sys.stdin.readline())
var = dat aset (varnane)

dat aset . cl ose()

Cal cul ate variance, count, and set attributes
vari ance,n = cal cVar(var)
variance.id = 'variance_% %ar.id
n.id = 'count _%’ %War.id
if hasattr(var,’ units’):
variance.units = '(%)"2 %ar.units

Plot variance

w=ves.init()
@ w. pl ot (vari ance)
pause()

w. cl ear ()
w. pl ot (n)
pause()

w. cl ear ()

The result of running this script is as follows:

Climate Data Management System 109

CDMS Python Application Programming Interface

% cal cVar. py
Enter dataset path [/pcndi/cdns/sanpl e/ obs/ erbs_no. xm]:
Variables in file: /pcndi/cdnms/sanpl e/ obs/ erbs_no. xm

al bt : Al bedo TOA [%

al bt cs : Al bedo TOA clear sky [%

ricrft : LWd oud Radiation Forcing TOA [W 2]
rlut : LWradiation TOA (OLR) [W 2]

rlutcs : LWradiation upward TOA cl ear sky [Wnt2]
rscrft : SWd oud Radiation Forcing TOA [W nm2]
rsdt : SWradiation downward TOA [W 2]

rsut : SWradiation upward TOA [W 2]

rsutcs : SWradiation upward TOA cl ear sky [Wnt2]

Sel ect a variable: albt
<The variance is plotted>
Hit return to continue:

<The nunber of points is plotted>

Notes:
8. n = count(x, 0) returnsthe pointwise number of valid values, summing across
axis 0, thefirst axis. count isan MV 2 function.

9. dataset isaDataset or CdmsFile object, depending on whether a.xml or .nc
pathname is entered. dat aset . vari abl es isadictionary mapping variable
name to file variable.

10. var isatransient variable.

11. Plot the variance and count variables. Spatial longitude and latitude information
are carried with the computations, so the continents are plotted correctly.

110

Climate Data Management System

CHAPTER 3

cdtime Module

3.1 Timetypes
The cdtime module implements the CDM S time types, methods, and
calendars. These are made available with the command

i mport cdtine

Two time types are avail able: relative time and component time. Relative
timeistimereative to afixed base time. It consists of:

* aunits string, of theform “units since basetime”, and

e afloating-point val ue

For example, the time “28.0 days since 1996-1-1" has value=2s. o0, and
units=" days since 1996-1-1"

Component time consists of the integer fieldsyear, month, day, hour,
ni nut e, and the floating-point field second. A sample component time is
1996-2-28 12:10:30.0

Climate Data Management System 11

cdtime Module

The cdtime module contains functions for converting between these forms,
based on the common calendars used in climate simulation. Basic arith-
metic and comparison operators are also available.

3.2 Calendars

A calendar specifies the number of daysin each month, for agiven
year. cdtime supports these calendars:

* cdtime. GegorianCal endar: years evenly divisible by four are leap years,
except century years not evenly divisible by 400. Thisis sometimes called the
proleptic Gregorian calendar, meaning that the algorithm for leap years applies
for al years.

* cdtime. M xedCal endar : mixed Julian/Gregorian calendar. Dates before 1582-
10-15 are encoded with the Julian calendar, otherwise are encoded with the Gre-
gorian calendar. The day immediately following 1582-10-4 is 1582-10-15. This
is the default calendar.

* cdtinme. JulianCal endar: yearsevenly divisible by four are leap years,

* cdtime. NoLeapCal endar : al years have 365 days,

* cdtime. Cal endar 360: al months have 30 days.

Several cdtime functions have an optional calendar argument. The default
calendar isthe M xedcal endar. The default calendar may be changed with
the command:

cdti nme. Def aul t Cal endar = newCal endar

3.3 Time Constructors

The following table describes the methods for creating time types.

112

Climate Data Management System

Time Constructors

Table 3.1 Time Constructors

Type Definition
Reltime cdtime.reltime(value, relunits)
Create arelative time type.
value is an integer or floating point value.
relunitsis a string of the form “ unit(s) [si nce basetime]”
where
unit =[second | minute | hour | day | week | nonth |
season | year]
baset i me hastheformyyyy- mm dd hh: ni : ss. The default
basetimeis 1979- 1- 1, if no since clause is specified.
Example:
r = cdtinme.reltinme(28, “days since 1996-1-1")
Comptime cdtime.comptime(year, month=1, day=1, hour=0,

minute=0, second=0.0)
Create a component time type.
year is an integer.
month isan integer intherange 1 .. 12
dayisaninteger intherangel .. 31
hour isaninteger intherange0 .. 23
minuteis an integer intherange 0 .. 59
second is a floating point number in the range 0.0 ,, 60.0
Example: ¢ = cdtine. conptine(1996, 2, 28)

Climate Data Management System 113

cdtime Module

Table 3.1 Time Constructors

Type

Comptime

Definition
[Deprecated] cdtime.abstime(absvalue, absunits)
Create a component time from an absol ute time representation.

absvalue is afloating-point encoding of an absolute time.

absunitsis the units template, a string of the form “unit as
format", whereunit isoneof second, minute, hour, day,
cal endar _nmonth, Or cal endar _year. f or mat isastring of
the form" o[[...]1]1[.% 1", wherex isone of the format
letters’y’ (year, including century), 'm (two digit month,
01=January), 'd’ (two-digit day within month), 'H (hours
since midnight), 'M (minutes), or s’ (seconds). The optional
. 9% ' denotes afloating-point fraction of the unit.

Example: ¢ = cdtine. absti me(19960228. 0, “day as
%o, %)

3.4 Relative Time

A relative time type has two members, val ue and uni t s. Both can be

Set.

Table 3.2 Relative Time Members

Type
Float
String

Name Summary

value Number of units

units Relative units, of the form “uni t (s) since
baseti ne”

114

Climate Data Management System

Component Time

3.5 Component Time

A component time type has six members, all of which are settable.

Table 3.3 Component Time Members

Type Name
Integer year
Integer month
Integer day
Integer hour
Integer minute
Float second

Summary

Year value

Month, in the range 1..12

Day of month, intherange1 .. 31
Hour, intherange 0 .. 23

Minute, in therange 0 .. 59
Seconds, in the range 0.0 .. 60.0

3.6 Time Methods

The following methods apply both to relative and component times.

Climate Data Management System

115

cdtime Module

Table 3.4 Time Methods

Type

Comptime
or Reltime

Definition

t.add(value, intervalUnits, calendar=cdtime.Default-
Calendar)

Add aninterval of timeto atime typet. Returns the same type
of time.

valueis the Float number of interval units.

intervalUnitsiscdt i ne. [Second(s) | M nute(s) | Hour(s)
| Day(s) | Week(s) | Month(s) | Season(s) | Year(s)]

calendar is the calendar type.
Example:

>>> fromcdtinme inport *

>>> ¢ = conptinme(1996, 2, 28)

>>> 1 = reltinme(28,"days since 1996-1-1")
>>> print r.add(1, Day)

29.00 days since 1996-1-1

>>> print c.add(36, Hours)

1996-2-29 12:0:0.0

Note: When adding or subtracting intervals of months or
years, only the month and year of the result are significant.
The reason is that intervalsin months/years are not commen-
surate with intervals in days or fractional days. This leads to
results that may be surprising. For example:

>>> ¢ = conptinme(1979, 8, 31)
>>> c¢. add(1, Mont h)
1979-9-1 0:0:0.0

In other words, the day component of ¢ was ignored in the
addition, and the day/hour/minute components of the results

are just the defaults. If the interval isin years, theinterva is
converted internally to months:
>>> ¢ = conptine(1979, 8, 31)

>>> c. add(2, Years)
1981-8-1 0:0:0.0

116

Climate Data Management System

Time Methods

Table 3.4 Time Methods

Type

Integer

Definition
t.cmp(t2, calendar =cdtime.DefaultCalendar)

Comparetime valuest and t2. Returns -1, 0, 1 ast isless than,
equal to, or greater than t2 respectively.

t2 isthe time to compare.
calendar is the calendar type.
Example:

>>> from cdtinme inport *

>>> ¢ = cdtine.reltinme(28,"days since 1996-1-1")
>>> ¢ = conptine(1996, 2, 28)

>>> print r.cnp(c)

-1

>>> print c.cnp(r)

1

>>> print r.cnp(r)

0

Comptime
or Reltime

t.sub(value, intervalUnits, calendar =cdtime.Default-
Calendar)

Subtract an interval of time from atime typet. Returns the
same type of time.

valueis the Float number of interval units.

intervalUnitsiscdt i ne. [Second(s) | M nute(s) | Hour(s)
| Day(s) | Week(s) | Month(s) | Season(s) | Year(s)]

calendar is the calendar type.
Example:

>>> from cdtinme inport *

>>> r = cdtinme.reltine(28,"days since 1996-1-1")
>>> ¢ = conptine(1996, 2, 28)

>>> print r.sub(10, Days)

18. 00 days since 1996-1-1

>>> print c.sub(30, Days)

1996-1-29 0:0:0.0

For intervals of years or months, see the note under add().

Climate Data Management System 117

cdtime Module

Table 3.4 Time Methods

Type Definition
Comptime t.tocomp(calendar = cdtime.DefaultCalendar)
Convert to component time. Returnsthe equivalent component
time.
calendar is the calendar type.
Example:
>>> r = cdtinme.reltine(28,"days since 1996-1-1")
>>> r.toconp()
1996-1-29 0:0:0.0
Reltime t.torel(units, calendar=cdtime.DefaultCalendar)

Convert to relative time. Returns the equivalent relative time.
Example:

>>> ¢ = conptine(1996, 2, 28)

>>> print c.torel ("days since 1996-1-1")
58. 00 days since 1996-1-1

>>> r = reltinme(28,"days since 1996-1-1")
>>> print r.torel ("days since 1995")

393. 00 days since 1995

>>> print r.torel ("days since 1995").val ue
393.0

118

Climate Data Management System

CHAPTER 4

Regridding Data

4.1 Overview

CDMS provides several methods for interpolating gridded data:

* from one rectangular, lat-lon grid to another (CDM S regridder)

* between any two lat-lon grids (SCRIP regridder)

* from one set of pressure levelsto another

* from one vertical (lat/level) cross-section to another vertical cross-section.

411 CDMShorizontal regridder

The simplest method to regrid a variable from one rectangular, lat/lon grid
to another isto use the regrid function defined for variables. This function
takes the target grid as an argument, and returns the variable regridded to
the target grid:

>>> jnport cdms2

>>> f = cdns2. open(’ / pcndi/ cdns/ exp/ cm p2/ccc/ perturb. xm ')
>>> rlsf = f('rls’) # Read the data

>>> r| sf.shape

(4, 48, 96)

Climate Data Management System 119

Regridding Data

>>>
>>>
>>>
>>>
>>>
(4,

>>>

(46,

g = cdns2. open(’ /pcndi/ cdns/ exp/ cm p2/ nri/perturb.xm’)
rlsg = g['rls’] # Get the file variable (no data read)
outgrid = rlsg.getGid() # Get the target grid
rlsnew = rlsf.regrid(outgrid)

rl snew. shape

46, 72)

out gri d. shape

72)

A somewhat more efficient method isto create a regridder function. This
has the advantage that the mapping is created only once and can be used for
multiple arrays. Also, this method can be used with datain the form of an
ma.MaskedArray or NumPy array. The steps in this process are:

e Givenaninput grid and output grid, generate a regridder function.

e Call the regridder function on a NumPy array, resulting in an array defined on
the output grid. The regridder function can be called with any array or variable
defined on the input grid.

The following exampleillustrates this process. The regridder functionis
generated at line 9, and the regridding is performed at line 10:

0~NOO O WN PR

=
o ©

11
12

Line

2

3

#!/usr/ bi n/ env python

i mport cdns2

fromregrid2 inport Regridder

f = cdms2. open(’/pcrdi/ cdns/ exp/ cmi p2/ ccc/ perturb. xm ')
rlsf =f['rls’]

ingrid = rlsf.getGid()

g = cdns2. open(’/pcndi/cdns2/ exp/ cm p2/nri/perturb.xm’)
outgrid = g['rls].getGid()

regridfunc = Regridder(ingrid, outgrid)

rlsnew = regridfunc(rl sf)

f.close()

g.close()

Notes
Makes the CDM S module available.

Makes the Regri dder class available from theregri d2 module.

120 Climate Data Management System

Overview

Line Notes

4 Opens the input dataset.

5 Getsthe variable object named r1 s’ . No datais read.

6 Getstheinput grid.

7 Opens a dataset to retrieve the output grid.

8 The output grid is the grid associated with the variablenamed “ r I s

in dataset g. Just the grid isretrieved, not the data.
9 Generates aregridder function r egri df unc.

10 Reads all datafor variabler| sf, and calls the regridder function on
that data, resulting in atransient variabler | snew.

412 SCRIP horizontal regridder
To interpolate between grids where one or both grids is non-rectangu-

lar, CDMS provides an interface to the SCRIP regridder package devel oped
at Los Alamos National Laboratory (http://climate.lanl.gov/Software/
SCRIP). Figure 3 illustrates the process:

Obtain or generate the source and target gridsin SCRIP netCDF format. A
CDMS grid can be written to anetCDF file, in SCRIP format, using thewrite-
ScripGrid method.

Edit the input namelist filescri p_i n to reference the grids and select the
method of interpolation, either conservative, bilinear, bicubic, or distance-
weighted. See the SCRIP documentation for detailed instructions.

Run the scrip executabl e to generate aremapping file containing the transforma-
tion coefficients.

In CDMS, open the remapping file and create a regridder function with the
readRegridder method.

Call theregridder function on the input variable, defined on the source grid. The
return valueis the variable interpol ated to the new grid. Note that the variable

Climate Data Management System 121

Regridding Data

may have more than two dimensions. Also note that the input arguments to the
regridder function depend on the type of regridder. For example, the bicubic
interpolation has additional arguments for the gradients of the variable.

-

|

|

|

|

|

L

r—— - - - - - —a T — — = = = = - = A
filereadscripGrid() (regridreadRegridder)) nput data | |
cdms2.writeScrip- [

I ' I

l l

! CDMSgrid !

| classes |

I Regridded |

I CDMS data |

L e e e e e e e e e — — — — ——— — -

FIGURE 3. Regridding data with SCRIP

Example: Regrid datafrom a T42 to POP4/3 grid, using the first-order,
conservative interpolator.

In this example:

e Theinput gridisdefined inremap_grid_T42.nc.

e Theoutput grid is defined in remap_grid POP43.nc.

e Theinput dataisvariable src_array in file sampleT42Grid.nc.
e Thefilescrip_i n has contents:

& emap_i nput s
num nmaps = 1

122 Climate Data Management System

Overview

gridl_file = "remap_grid_T42.nc'

grid2_file = '"remap_grid_POP43. nc'

interp_filel = 'rnp_T42_to_POP43_conserv.nc'
interp_file2 = 'rnp_POP43_to_T42_conserv.nc'
mapl_name = 'T42 to POP43 Conservative Mapping'
map2_nane = 'POP43 to T42 Conservative Mapping'
map_net hod = ' conservative'

normal i ze_opt = 'frac'

out put _opt = 'scrip'

restrict_type = 'latitude'

num srch_bins = 90

.fal se.
.fal se.

luse_gridl_area
| use_grid2_area

num maps Specifies the number of mappings generated, either 1 or 2. For a
singlemapping, gridi_file andgrid2_fil e are the source and target grid
definitions, respectively. The map_net hod Specifies the type of interpolation,
either « conservative’, * bilinear’,*bicubic , Ordistwt’ (distance-
weighted). The remaining parameters are described in the SCRIP documen-
tation.

Once the grids and input file are defined, run the scrip executable to gener-
ate the remapping file r mp_T42_t o_POP43_conserv. nc:

% scrip

Using latitude bins to restrict search.
Conputing remappi ngs bet ween:

T42 Gaussian Gid

and
POP 4/ 3 Displaced-Pole T grid
gridl sweep
grid2 sweep
Total nunber of links = 63112

Next, run CDAT and create the regridder:

Inport regrid package for regridder functions
i nmport regrid2, cdns2

Read the regridder fromthe remapper file

remapf = cdns2. open(' rnp_T42_t o_POP43_conserv.nc')
regridf = regrid2.readRegridder (renmapf)

remapf . cl ose()

Then read the input data and regrid:

Cet the source variable

f = cdnms2. open(' sanpl eT42Grid.nc')
t42dat = f('src_array')

f.close()

Climate Data Management System 123

Regridding Data

Regrid the source variable
popdat = regridf(dat)

Note that t 42dat can have rank greater than 2. The trailing dimensions must
match the input grid shape. For example, if t 42dat has shape (12, 64, 128),
then the input grid must have shape (64,128). Similarly if the variable had a
generic grid with shape (8092,), the last dimension of the variable would
have length 8092.

4.1.3 Pressure-level regridder

To regrid avariable which is a function of |atitude, longitude, pres-
sure level, and (optionally) time to a new set of pressure levels, usethe
pressureRegrid function defined for variables. This function takes an axis
representing the target set of pressure levels, and returns a new variable d
regridded to that dimension.

>>> var. shape

(3, 16, 32)

>>> var. get Axi sl ds()

["level’, "latitude', 'longitude’]

>>> | en(| evout)

2

>>> result = var.pressureRegrid(levout)

>>> resul t.shape
(2, 16, 32)

414 Cross-section regridder

To regrid avariable which is a function of latitude, height, and
(optionally) time to a new latitude/height cross-section, use the crossSec-
tionRegridder defined for variables. This function takes as arguments the
new latitudes and heights, and returns the variable regridded to those axes.

>>> varin. shape

(11, 46)
>>> varin. get Axi sl ds()
["level’, "latitude’]
>>> | evQut[:]
[10., 30., 50., 70., 100., 200., 300., 400., 500.
700., 850.
1000.,]

>>> varout = varin.crossSectionRegrid(levQut, |atCut)
>>> varout . shape

124

Climate Data Management System

regrid2 module

(12, 64)

4.2 regrid2 module

The regrid2 module implements the CDMSS regridding functionality
aswell asthe SCRIP interface. Although thismoduleis not strictly a part of
CDMS, it is designed to work with CDM S objects.

421 CDMShorizontal regridder

The Python command

fromregrid2 inport Regridder

makes the CDM S Regridder class available within a Python program. An
instance of Regridder is a function which regrids data from rectangular
input to output grids.

Table 4.1 CDMS Regridder Constructor

regridFunction = Regridder (inputGrid, outputGrid)

Create aregridder function which interpolates a data array from input to out-
put grid. Table 4.3 on page 129 describes the calling sequence of this function.

inputGrid and outputGrid are CDMS grid objects.

Note: To set the mask associated with inputGrid or outputGrid, use the grid
setM ask function.

422 SCRIP Regridder

SCRIP regridder functions are created with the regrid.readRegrid-
der function :

Climate Data Management System 125

Regridding Data

Table 4.2 SCRIP Regridder Constructor

regridFunction =regrid.readRegridder (fileobj, mapM ethod=None,
checkGrid=1)

Read aregridder from an open CDM S file object.
fileobj isa CDMSfile object, as returned from cdms2.open.
mapMethod is one of

* ‘conservative' :conservative remapper, suitable where area-integrated
fields such as water or heat fluxes must be conserved.

e ‘bilinear’ :bilinear interpolation
* ‘bicubic’ :bicubicinterpolation
e ‘distwgt’ :distance-weighted interpolation.

It isonly necessary to specify the map method if it is not defined in the
file

If checkGridis 1 (default), the grid cells are checked for convexity,

and 'repaired' if necessary. Grid cells may appear to be nonconvex if they cross
a0/ 2pi boundary. The repair consists of shifting the cell vertices to the same
side modul o 360 degrees.

4.3 regridder functions

431 CDMSregridder functions

A CDMS regridder function is an instance of the CDM S Regridder
class. The function is associated with rectangular input and output grids.
Typically itsuseis straightforward: the function is passed an input array and
returns the regridded array. However, when the array has missing data, or
the input and/or output grids are masked, the logic becomes more compli-
cated.

126

Climate Data Management System

regridder functions

Sep 1: Theregridder function first forms an input mask. Thismask iseither
two-dimensional or ‘n-dimensional’, depending on the rank of the user-sup-
plied mask. If no mask or missing value is specified, the mask is obtained
from the data array mask if present.

Two-dimensional case:

* Let mask 1 be the two-dimensional user mask supplied viathe mask argu-
ment, or the mask of the input grid if no user mask is specified.

* |f amissing-datavalue is specified viathe ni ssi ng argument, let the
implicit_mask be the two-dimensional mask defined as 0 where the first hori-
zontal slice of the input array ismissing, 1 elsewhere.

* Theinput mask isthe logical AND(mask_1, implicit_mask)

N-dimensional case: If the user mask is 3 or 4-dimensional with the
same shape as the input array, it is used as the input mask.

Sep 2: The dataisthen regridded. In the two-dimensional case, the input
mask is ‘broadcast’ acrossthe other dimensions of the array. In other words,
it assumes that all horizontal slices of the array have the same mask. The
result is a new array, defined on the output grid. Optionally, the regridder
function can also return an array having the same shape as the output array,
defining the fractional area of the output array which overlaps a non-miss-
ing input grid cell. Thisis useful for calculating area-weighted means of
masked data.

Sep 3: Finadly, if the output grid has amask, it is applied to the result array.
Where the output mask is 0, data values are set to the missing data value, or
1.0e20 if undefined. The result array or transient variable will have a mask
value of 1 (invalid value) for those output grid cells which completely over-
lap input grid cells with missing values.

Climate Data Management System 127

Regridding Data

128 Climate Data Management System

regridder functions

Table 4.3 CDMS Regridder function

Type

Array or regridFunction(array, missing=None, order=None,
Transient- mask=None)

Variable

Interpolate a gridded data array to a new grid. The interpola-
tion preserves the area-weighted mean on each horizontal
dice. If array isa Variable, a TransientVariable of the same
rank asthe input array is returned, otherwise amasked array is
returned.

array isaVariable, masked array, or NumPy array of rank 2, 3,
or 4.

missing is a Float specifying the missing data value. The
default is 1.0e20.

order is astring indicating the order of dimensions of the
array. It has the form returned from variable.getOrder (). For
example, the string “tzyx” indicates that the dimension order
of array is (time, level, latitude, longitude). If unspecified, the
function assumes that the last two dimensions of array match
the input grid.

mask isaNumPy array, of datatype I nteger or Float, consisting
of afractional number between 0 and 1. A value of 1 or 1.0
indicates that the corresponding data valueisto beignored for
purposes of regridding. A value of 0 or 0.0 indicates that the
corresponding datavalue is valid. Thisis consistent with the
convention for masks used by the numpy.core.ma module. A
fractional value between 0.0 and 1.0 indicates the fraction of
the data value (e.g., the corresponding cell) to be ignored when
regridding. Thisisuseful if avariableisregridded first to grid
A and then to ancther grid B; the mask when regridding from
A to B would be (1.0 - f) wheref is the maskArray returned
from theinitial grid operation using the returnTuple argument.

If mask istwo-dimensional of the same shape asthe input grid,
it overrides the mask of the input grid. If the mask has more
than two dimensions, it must have the same shape as array. In
this case, the missing data value is also ignored. Such an n-
dimensional mask isuseful if the pattern of missing datavaries
with level (e.g., ocean data) or time.

Note: If neither missing or mask is set, the default mask is
obtained from the mask of the array if any.

Climate Data Management System 129

Regridding Data

Table 4.3 CDMS Regridder function

Type

Array, Array regridFunction(ar, missing=None, or der=None,
mask=None, returnTuple=1)

If called with the optional returnTuple argument equal to 1, the
function returns a tuple (dataArray, maskArray). dataArray is
the result data array. maskArray is a Float32 array of the same
shape as dataArray, such that maskArray/i,j] isfraction of the
output grid cell [i,j] overlapping a non-missing cell of the
input grid.

432 SCRIP Regridder functions

A SCRIP regridder function is an instance of the ScripRegridder
class. Such afunction is created by calling the regrid.readRegridder
method. Typical usageis straightforward:

>>> regridf = regrid2.readRegridder(remap_file)
>>> outdat = regridf(indat)

The bicubic regridder takes four arguments:
>>> outdat = regridf(indat, gradlat, gradlon, gradlatlon)

A regridder function also has associated methods to retrieve the following

fields:

e Input grid

e Output grid

* Source fraction: the fraction of each source (input) grid cell participating in the
interpol ation.

* Destination fraction: the fraction of each destination (output) grid cell partici-
pating in the interpolation.

130 Climate Data Management System

regridder functions

In addition, a conservative regridder has the associated grid cell areas for
source and target grids.

Table 4.4 SCRIP Regridder functions

Return Type

Array or [conservative, bilinear, and distance-weighted regrid-
Transient- ders)

Variable

regridFunction(array)

Interpolate a gridded dataarray to anew grid. The return value
isthe regridded data variable.

array is a Variable, MaskedArray, or NumPy array. The rank
of the array may be greater than the rank of the input grid, in
which case the input grid shape must match atrailing portion
of the array shape. For example, if the input grid is curvilinear
with shape (64,128), the last two dimensions of the array must
match. Similarly, if the input grid is generic with shape
(2560,), the last dimension of the array must have that length.

Climate Data Management System 131

Regridding Data

Table 4.4 SCRIP Regridder functions

Return Type

Array or
Transient-
Variable

[bicubic regridders]

regridFunction(array, gradientL at, gradientL on, gra-
dientL atL on)

Interpolate a gridded data array to a new grid, using a bicubic
regridder. The return value is the regridded data variable.

array is a Variable, MaskedArray, or NumPy array. The rank
of the array may be greater than the rank of the input grid, in
which case the input grid shape must match atrailing portion
of the array shape. For example, if the input grid is curvilinear
with shape (64,128), the |ast two dimensions of the array must
match. Similarly, if the input grid is generic with shape
(2560,), the last dimension of the array must have that length.

gradientLat: df/di (see the SCRIP documentation). Same
shape as array.

gradientLon: df/dj. Same shape as array.
gradientLatLon: d(df)/(di)(dj). Same shape as array.

NumPy
array

getDestinationArea()
[conservative regridder s only]

Return the area of the destination (output) grid cell. The array
is 1-D, with length equal to the number of cellsin the output
grid.

NumPy
array

getDestinationFraction()

Return the area fraction of the destination (output) grid cell
that participatesin the regridding. The array is 1-D, with
length equal to the number of cellsin the output grid.

CurveGrid
or Generic-
Grid

getlnputGrid()

Return the input grid, or None if no input grid is associated
with the regridder.

132

Climate Data Management System

Examples

Table 4.4 SCRIP Regridder functions

Return Type

CurveGrid getOutputGrid()

or Generic- .

Grid Return the output grid.

NumPy getSour ceArea()

arey [conservative regridder s only]
Return the area of the source (input) grid cell. The array is 1-
D, with length equal to the number of cellsin the input grid.

NumPy getSour ceFraction()

arsy Return the area fraction of the source (input) grid cell that par-
ticipatesin the regridding. The array is 1-D, with length equal
to the number of cellsin theinput grid.

4.4 Examples

441 CDMSregridder
Example: Regrid datato a uniform output grid.

#!'/usr/ 1 ocal / bi n/ pyt hon

i mport cdns2

fromregrid2 inport Regridder

f = cdns2.open(’'rls_ccc_per.nc’)

rlsf = f.variables['rls’]

ingrid = rlsf.getGid()

outgrid = cdns2.createUnifornaid(90.0, 46, -4.0, 0.0, 72,
5.0)

regridFunc = Regridder(ingrid, outgrid)

9 newls = regridFunc(rlsf)

~NoO b~ WNBE

[e¢]

Climate Data Management System 133

Regridding Data

10

Line

f.close()

Notes
Open a netCDF file for input.

Create a4 x 5 degree output grid. Note that thisgrid is not associated
with afile or dataset

Create the regridder function

Read all data and regrid. The missing data valueis obtained from
variablerlsf.

Example: Get amask from a separate file, and set as the input grid mask.

0~NOO O WN PR

©

Line

6

i mport cdns2

fromregrid2 inport Regridder

#

f = cdnms2. open(’ so_ccc_per.nc’)

sof = f.variables[’s0']

ingrid = sof.getGid()

g = cdns2.open('rls_nri_per.nc’)

rlsg = g.variables[’'rls’]

outgrid = rlsg.getGid()

regridFunc = Regridder(ingrid,outgrid)
h = cdnms2. open(’'sft_ccc.nc’)

sfmaskvar = h.vari abl es[’ sf mask’]
sfmask = sfmaskvar[:]

out Array = regri dFunc(sof.subSlice(tine=0), mask=sf mask)
f.close()

g.close()

h. cl ose()

Notes

Get the input grid.

134

Climate Data Management System

Examples

Line

10
13

14

Exampl

1
2
3
4
5
6
7

Line

Notes

Get the output grid

Create the regridder function.
Get the mask.

Regrid with auser mask. The subdice call returnsatransient variable
corresponding to variable sof at time 0.

Note: Although it cannot be determined from the code, both mask and
theinput array sof are four-dimensional. Thisisthe ‘n-dimensional’
case.

e: Generate an array of zonal mean values.

f = cdns2.open(’'rls_ccc_per.nc’)

rlsf = f.variables['rls’]

ingrid = rlsf.getGid()

outgrid = cdns2. createZonal Gid(ingrid)
regri dFunc = Regridder(ingrid,outgrid)
mean = regridFunc(rl sf)

f.close()

Notes
Get the input grid.

Create azona grid. out gri d hasthe same latitudes asi ngri d, and a
singleton longitude dimension. createGlobalMeanGrid could be
used here to generate a global mean array.

Generate the regridder function.

Climate Data Management System 135

Regridding Data

Line

6

Notes

Generate the zonal mean array.

Example: Regrid an array with missing data, and calculate the area-
weighted mean of the result.

1

N

O OVWowOw~NOOU AW

Line

fromcdnms2. W i nport *

outgrid = cdns2.createUnifornaid(90.0, 46, -4.0, 0.0, 72,
5.0)

outlatw, outlonw = outgrid. getWights()

out wei ght s = out erproduct (outl atw, outl onw)

grid = var.getGid()

sanple = var[0, 0]

latw, | onw = grid.getWights()

wei ghts = outerproduct (latw, |onw)

i nmask = where(greater(absol ute(sanple), 1.el5),0, 1)

mean = add. reduce(ravel (i nmask*wei ght s*sanple))/

add. reduce(ravel (i nmask*wei ghts))

regridFunc = Regridder(grid, outgrid)

out sanpl e, outmask = regri dFunc(sanpl e, mask=i nmask,
returnTupl e=1)

out nean = add. reduce(ravel (out mask*out wei ght s*out sanpl e))/
add. reduce(ravel (out mask*out wei ghts))

Notes

Create auniform target grid.

Get the latitude and longitude weights.
Generate a 2-D weights array.

Get theinput grid. var isa4-D variable.

Get the first horizontal slice fromvar.

136 Climate Data Management System

Examples

Line Notes

7-8 Get the input weights, and generate a 2-D weights array.

9 Set the 2-D input mask.

10 Calculate the input array area-weighted mean.

11 Create the regridder function.

12 Regrid. Becauser et ur nTupl e isset to 1, theresult isatuple (dataAr-
ray, maskArray).

13 Calculate the area-weighted mean of the regridded data. rean and

out mean should be approximately equal.

442 SCRIPregridder

Example: Regrid from acurvilinear to a generic grid, using a conser-
vative remapping. Compute the area-weighted means on input and output
for comparison.

i nport cdns2, regrid2, nunpy.core.ma as MA

Open the SCRIP remapping file and data file

direc ="'

fremap = cdns2. open(direc+ rnp_T42_t o_C02562_conserv.nc')
fdat = cdns2. open(direc+ sanpl eT42Gid.nc')

Input data array
dat = fdat('src_array')

Read the SCRIP regridder
regridf = regrid2.readRegridder(frenmap)

Regrid the variable
outdat = regridf(dat)

Cet the cell area and fraction arrays. Areas are conputed only
for conservative regridding.

srcfrac = regridf. get SourceFraction()

srcarea = regridf.get SourceArea()

dstfrac = regridf.getDestinationFraction()

dstarea = regridf.getDestinationArea()

Cal cul ate area-wei ghted neans

i nmean = MA. sun{srcfrac*srcarea*MA. ravel (dat)) / MA sun(srcfrac*srcarea)

out mean = MA sun(dstfrac*dstarea*MA ravel (outdat)) / MA sun(dstfrac*dstarea)
print 'Input nmean:', innean

print 'CQutput nean:', outnean

Climate Data Management System 137

Regridding Data

fremap. cl ose()
fdat.cl ose()

138 Climate Data Management System

CHAPTER 5

Plotting CDMSdata in
Python

5.1 Overview

Dataread viathe CDM S Python interface can be plotted using the vcs
module. This module, part of the Climate Data Analysis Tool (CDAT) is
documented in the CDAT reference manual. The ves module provides
access to the functionality of the VCS visualization program.

Examples of plotting data accessed from CDM S are given below, aswell as
documentation for the plot routine keywords.

5.2 Examples

In the following examples, it is assumed that variable psi is dimen-
sioned (time, latitude, longitude). psi is contained in the dataset named
‘sample.xm .

521 Example: plotting agridded variable

1 inport cdns2, vcs
2 #

Climate Data Management System 139

Plotting CDMS data in Python

3 f = cdns2. open(’ sanple.xm)
4 psl = f.variables[’ psl’]
5 sanple = psl[0]
6 w=vcs.init()
7 #

8 w. plot(sanple)
9 f.close()

Line Notes

5 Get a horizontal slice, for the first timepoint.
6 Create a VCS Canvas w
8 Plot the data. Because sanpl e isatransient variable, it encapsulates

all the time, latitude, longitude, and attribute information.

9 Close thefile. This must be done after the reference to the persistent
variable psl .

That'sit! The axis coordinates, variable name, description, units, etc. are
obtained from variable sanpl e.

What if the units are not explicitly defined for psi , or adifferent description
isdesired? plot has anumber of other keywordswhich ‘fill in’ the extraplot
information.

522 Example: using plot keywords.
w. plot(array, units="mmday’, file_coment="Hi gh-frequency

reanal ysis’, long_nane="Sea |evel pressure", commentl1="Sanple
plot", hne="18:00: 00", ynd="1978/01/01")

Note: Keyword arguments can be listed in any order.

140

Climate Data Management System

Examples

5.2.3 Example: plotting atime-latitude dlice

Assuming that variable psi has domain (time,latitude,longitude), this
example selects and plots atime-latitude slice:

1 sanp = psl[:,:,0]
w = vcs.init()
3 w. plot(sanp, nane='sea | evel pressure’)

N

Notes:

Line Notes

1 sanp isadiceof pd, at index 0 of thelast dimension. Since sanp was
obtained from the dlice operator, it is atransient variable, which
includes the latitude and time information.

3 The name keyword defines the identifier, by default the namein the
file.

524 Example: plotting subsetted data

Calling the variable psi as afunction reads a subset of the variable.
Theresult variable sanp can be plotted directly:

1 sanp = psl(tinme=(0.0,100.0), |ongitude=180.0)
2 w=vcs.init()
3 w. plot(sam)

Climate Data Management System 141

Plotting CDMS data in Python

5.3 plot method

The plot method is documented in the CDAT Reference Manual. This

section augments the documentation with a description of the optiona key-
word arguments.

The general form of the plot command is:

canvas.plot(array [, args] [,key=value[, key=value[, ...]1])

where:

canvasisaVCS Canvas aobject, created with the ves.init method.

array is avariable, masked array, or NumPy array having between two and five
dimensions. The last dimensions of the array is termed the ‘X’ dimension, the
next-to-last the 'y’ dimension, then‘z’, ‘t’, and ‘w’. For example, if array is
three-dimensional, the axes are (z,y,x), and if array is four-dimensional, the
axesare (t,z,y,x). (Note that the ‘t’" dimension need have no connection with
time; any spatial axis can be mapped to any plot dimension. For agraphics
method which istwo-dimensional, such as boxfill, the y-axisis plotted on the
horizontal, and the x-axis on the vertical.

If array isagridded variable on arectangular grid, the plot function uses a box-
fill graphics method. If it is non-rectangular, the meshfill graphics method is
used.

Note that some plot keywords apply only to rectangular grids only.

args are optional positional arguments:
args := template_name, graphics_method, graphics name
template_name; the name of the VCS template (e.g., ‘AMIP’)
graphics method : the VCS graphics method (* boxfill")
graphics_name: the name of the specific graphics method (‘default’)

See the CDAT Reference Manual and VCS Reference Manual for a
detailed description of these arguments.

key=value, ... are optional keyword/value pairs, listed in any order. These are
defined in Table 5.1 on page 143.

142

Climate Data Management System

plot method

Table 5.1 plot keywords

key type value
commentl string Comment plotted above file_comment
comment2 string Comment plotted above comment1
comment3 string Comment plotted above comment2
continents Oor 1 if ==1, plot continental outlines (default:
plot if xaxisislongitude, yaxisis
latitude -or- xname is 'longitude’
and ynameis’latitude’
file_comment string Comment, defaults to variable.par-
ent.comment)
grid CDMSgrid Grid associated with the data. Defaults to
object variable.getGrid()
hms string Hour, minute, second
long_name string Descriptive variable name, defaults to
variable.long_name.
missing value sametypeas Missing data value, defaultsto vari-
array able.getMissing()
name string Variable name, defaults to variable.id
time cdtimerela- time associated with the data. Example:
tive or abso- cdtime.reltime(30.0, “days since
lute time 1978-1-1")
units string Data units. Defaults to variable.units

Climate Data Management System

143

Plotting CDMS data in Python

Table 5.1 plot keywords

key type value
variable CDMSvari- Variable associated with the data. The
able object variable grid must have the same
shape as the data array.

xarray 1-D NumPy [rectangular grids only]

E(i[Y)IZIt TR EiE Array of coordinate values, having the

4 same length as the corresponding
dimension. Defaults to xaxiq[:]
(ylzltwaxis[:])

xaxis CDMSaxis [rectangular grids only]

gymt"”]ax' Gt Axis object. xaxis defaults to
grid.getAxis(0), yaxis defaults to
grid.getAxis(1)

xbounds 2-D NumPy [rectangular grids only]

Ulseanes) gy Boundary array of shape (n,2) wheren is
the axis length. Defaults to
xaxis.getBounds(), or xaxis.genGe-
nericBounds() if None, similarly for
ybounds.

xname string [rectangular grids only]

g[])g)z|t|w]na Axis name. Defaults to xaxis.id

(lylzltiw] axis.id)

144

Climate Data Management System

plot method

Table 5.1 plot keywords

key type value

xrev (yrev) Oorl If xrev (yrev) is1, reversethe direction of
the x-axis (y-axis). Defaults to O,
with the following exceptions:

e If they-axisislatitude, and has decreasing
values, yrev defaultsto 1

* If they-axisisaverticd level, and has
increasing pressure levels, yrev defaults to

1.
Xunits string [rectangular grids only]
E[S§/|Z|I|W]unl Axis units. Defaults to xaxis.units

([ylzltiw]axis.units).

Climate Data Management System 145

Plotting CDMS data in Python

146 Climate Data Management System

CHAPTER 6

Climate Data Markup
Language (CDML)

6.1 Introduction

The Climate Data Markup Language (CDML) is the markup lan-
guage used to represent metadatain CDMS. CDML is based on the W3C
XML standard (http://www.w3.0rg). This chapter defines the syntax of
CDML. Read this section if you will be building or maintaining aCDMS
database.

XML, the eXtensible Markup Language, makes it possible to define
interoperable dialects of markup languages. The most recent version of
HTML, the Web hypertext markup language, isan XML dialect. CDML is
also an XML dialect, geared toward the representation of gridded climate
datasets. XML providesrigor to the metadata representation, ensuring that
applications can access it correctly. XML also deals with internationaliza-
tion issues, and holds forth the promise that utilities for browsing, editing,
and other common tasks will be available in the future.

CDML files have the file extension .xml or .cdml.

Climate Data Management System 147

Climate Data Markup Language (CDML)

6.2 Elements

A CDML document consists of a nested collection of e ements. An

element is a description of the metadata associated with a CDM S object.
The form of an element is:

<tag attribute-list> el enent-content </tag>
or

<tag attribute-list />

where

t ag isastring which defines the type of element

attribute-Ilist isablank-separated list of attribute-value pairs, of the
form:

attribute = “val ue”

el ement - cont ent depends on the type of element. It iseither alist of ele-
ments, or text which defines the element val ues. For example, the content of an
axis element either isalist of axisvalues, or isalinear element. For datasets,
the content is the blank-separated list of elements corresponding to the axes,
grids, and variables contained in the dataset.

The CDML e ements are:

Table 6.1 CDML Tags

Tag Description

attr Extra attribute

axis Coordinate axis

domain Axes on which avariable is defined

domElem Element of avariable domain

linear Linearly-spaced axis values

148

Climate Data Management System

Special Characters

Table 6.1 CDML Tags

Tag Description
rectGrid Rectilinear Grid
variable Variable

6.3 Special Characters

XML reserves certain characters for markup. If they appear as con-
tent, they must be encoded to avoid confusion with markup:

Table 6.2 Special Character Encodings

Character Encoding
< &It

> >

& &

“ & quot

‘ & apos

For example, the comment
Certain “special characters”, such as <, >, and ‘, nust
be encoded.

would appear in an attribute string as:

conment = “Certain " speci al characters", such
as &t, >, and &apos, nust be encoded.”

Climate Data Management System 149

Climate Data Markup Language (CDML)

6.4 ldentifiers

In CDMS, all objectsin a dataset have a unique string identifier. The
id attribute holds the value of thisidentifier. If the variable, axis, or grid has
astring name within a datafile, then the id attribute ordinarily hasthis
value. Alternatively, the name of the object in adatafile can be stored in the
name _in_file attribute, which can differ from the id. Datasets also have
IDs, which can be used within alarger context (databases).

An identifer must start with an alphabetic character (upper or lower case),
an underscore (), or acolon (:). Characters after the first must be alphanu-
meric, an underscore, or colon. There is no restriction on the length of an
identifier.

6.5 CF Metadata Sandard

The CF metadata standard (http://www.cgd.ucar.edu/cms/eaton/
netcdf/CF-current.htm) defines a set of conventions for usage of netCDF.
This standard is supported by CDML. The document defines names and
usage for metadata attributes. CF supersedesthe GDT 1.3 standard.

6.6 CDML Syntax

The following notation is used in this section:

e Courier font isusedfor asyntax specification. Bol d f ont highlights
literals.

* (R S) denotes‘either Ror S'.

* R* denotes‘zero or moreR’.

* R+ denotes‘oneor moreR'.

A CDML document consists of aprolog followed by a single dataset ele-
ment.

1. CDML-docunent ::= prol og dataset-el enent

150

Climate Data Management System

CDML Syntax

The prolog defines the XML version, and the Document Type Definition
(DTD), aformal specification of the document syntax. See http://
www.w3.0rg/TR/1998/REC-xml-19980210 for aformal definition of XML
Version 1.0.

2.

prolog ::=

<?xm version="1.0"?>

<! DOCTYPE dat aset SYSTEM "http://ww pcndi. || nl.gov/
~drach/ cdns/ cdm . dtd" >

6.6.1 Dataset Element

A dataset element describes a single dataset. The content isalist of ele-
ments corresponding to the axes, grids, and variables contained in the
dataset. Axis, variable, and grid elements can be listed in any order, and an
element ID can be used before the element is actually defined.

3.

dat aset-el ement ::= <dataset dataset-attri butes>
dat aset - cont ent </ dat aset >
dat aset-content ::= (axis-elenent | grid-el enent |

vari abl e-el ement)* extra-attri bute-el enent +

Table 6.3 Dataset Attributes

Requ

Attribute ired CF GDT Notes

appendi- N N Y Version number

ces

calendar N N Y Calendar used for encoding time
axes.
“gregorian” | “julian” | “noleap” |
“360_day” | “proleptic_gregorian” |
“standard”
Note: for the CF convention, the cal-
endar attribute is placed on the time
axis.

comment N Y Y Additional dataset information

Climate Data Management System 151

Climate Data Markup Language (CDML)

Table 6.3 Dataset Attributes

Requ

Attribute ired CF GDT Notes

Conven- Y Y Y The netCDF metadata standard.

tions Example: “CF-1.0"

cdms file Y N N Map of partitioned axesto files. See

map note bel ow.

directory N N N Root directory of the dataset

frequency N N N Temporal frequency

history N Y Y Evolution of the data

id Y N N Dataset identifier

institution N Y Y Who made or supplied the data

produc- N N Y How the data was produced (see

tion source)

project N N N Project associated with the data
Example: “CMIP 2"

references N Y N Published or web-based references
that describe the data or methods used
to produce it.

source N Y N The method of production of the orig-
ina data.

template N N N Filename template. Thisis an ater-
nate mechanism, other than
cdms_filemap, for describing the file
mapping. See ‘cdimport -h’ for
details.

title N Y N A succinct description of the data.

Notes:
e Thecdms_filemap attribute describes how the dataset is partitioned into files.

Theformat is:

filemap ::= [varnmap, varnap, ...]

varmap ::= [namelist, slicelist]

nanel i st = [nanme, nane, ...]

152 Climate Data Management System

CDML Syntax

slicelist ::=1] indexlist, indexlist, ,,,]

indexlist ::=1] tine0, tinmel, levO, levl, path]

name :: =variable name

ti me0 ::=firstindex of timeinthefile, or ‘-’ if not split ontime

tinmel ::=lastindex of time+ 1, inthefile or ‘- if not split on time

| ev0 :: =firstindex of vertical levelsin thefile, or ‘- * if not split on level

[evl ::=lastindex +1 of vertical levelsinthefile, or ‘-’ if not split on level
pat h :: = pathname of the file containing data for thistime/level range.

The pathname is appended to the value of the directory attribute, to obtain an
absolute pathname.

6.6.2 AXxis Element

An axis element describes a single coordinate axis. The content can be a
blank-separated list of axis values or alinear element. A linear element isa
representation of alinearly-spaced axis as (start, delta, length).

5. axi s-elenent ::= <axis axis-attri butes> axi s-content>
</ axi s>

6. axi s-content = (axis-values | linear-elenent)
extra-attribute-el enent*

7. axis-values ::= [val ue*]

8. linear-elenment ::= <linear delta="val ue”

| ength="1nteger” start="value”> </I|inear>

Climate Data Management System 153

Climate Data Markup Language (CDML)

Table 6.4 AXis Attributes

Requ
Attribute ired? CF
associate N N
axis N Y
bounds N Y
caendar N Y
climatology N Y
comment N Y
compress N Y
datatype Y N
dates N Y
expand N N
formula_terms N Y
id Y N

GDT

b

Notes

IDs of variables containing alterna-
tive sets of coordinates.

The spatial type of the axis:

“T" - time

“X" - longitude

“Y" - |atitude

“Z" - vertical level

“-" - not spatiotemporal

ID of the boundary variable
See dataset.calendar

Range of dates to which climato-
logical statistics apply.
String comment

Dimensions which have been com-
pressed by gathering

Char, Short, Long, Float, Double,
or String

Range of dates to which statistics
for atypical diurnal cycle apply.

Coordinates prior to contraction

Variables that correspond to the
termsin aformula.

Axisidentifier. Also the name of
the axisin the underlying file(s), if
name_in_fileisundefined.

154

Climate Data Management System

CDML Syntax

Table 6.4 AXis Attributes

Requ

Attribute ired? CF
isvar N N
leap_month N Y
leap_year N Y
length N N
long_name N Y
modulo N N
month_lengths N Y
name_in file N N
partition N N
partition lengt N N
h

positive N Y
standard name N Y

GDT

Notes
113 truel! | 113 fal $H

“false” if the axis does not have
coordinate values explicitly
defined in the underlying file(s).

Default: “true’

For a user-defined calendar, the
month which islengthened by a
day in leap years.

An example of aleap year for a
user-defined calendar. All years
that differ from thisyear by a mul-
tiple of four are leap years.

Number of axis values, including
valuesfor which no datais defined.
Cf. partition_length.

Long description of aphysical
guantity

Arithmetic modulo of an axis with
circular topology.

Length of each month in a non-
leap year for a user-defined calen-
dar.

Name of the axisin the underlying
file(s). Seeid.

How the axisis split acrossfiles.

Number of axis points for which
datais actually defined. If datais
missing for some values, thiswill
be smaller than the length.

Direction of positive for avertical
axis

Reference to an entry in the stan-
dard name table.

Climate Data Management System

155

Climate Data Markup Language (CDML)

Table 6.4 AXis Attributes

Requ
Attribute ired? CF GDT Notes
topology N N Y AXxis topology.
“circular” | “linear”
units Y Y Y Units of a physical quantity
weights N N N Name of the weights array

6.6.3 partition attribute

For an axisin adataset, the .partition attribute describes how an axis
is split acrossfiles. Itisalist of the start and end indices of each axis parti-
tion.

FIGURE 4. Partitioned axis

Coordinate value

S O O N A O A
@‘-‘b QQ% @Q) @‘-‘b'\' @cb 4%9 @Cb @Cb ©
B X & S $ P 3
[T []
L L e]
01 2. 1213 ... 23 2425 ... 36
Index value

For example, Figure 4 shows atime axis, representing the 36 months, Janu-
ary 1980 through December 1982, with December 1981 missing. The first
partition interval is (0,12), the second is (12,23), and the third is (24,36),
wheretheinterval (i,j) representsal indices k such that i <=k <j. The .par-
tition attribute for this axis would be the list:

[0, 12, 12, 23, 24, 36]

156 Climate Data Management System

CDML Syntax

Note that the end index of the second interval is strictly less than the start
index of the following interval. Thisindicates that datafor that period is
missing.

6.6.4 Grid Element

A grid element describes a horizontal, latitude-longitude grid which is recti-
linear in topol ogy,

9. grid-element ::= <rectGid grid-attributes> extra-
attribute-element* </rectGid>

Table 6.5 RectGrid Attributes

Attribute Required? GDT? Notes

id Y N Grid identifier

type Y N Grid classification
“gaussian” | “uniform” | “equalarea’ |
“generic’

Default; “generic”

latitude Y N L atitude axis name
longitude Y N Longitude axis name
mask N N Name of associated mask variable
order Y N Grid ordering
yxT A xy”
Default; “yx”, axis order is latitude,
longitude

6.6.5 Variable Element

A variable element describes a data variable. The domain of the variableis
an ordered list of domain € ements naming the axes on which the variable is
defined. A domain element is areferenceto an axis or grid in the dataset.

Climate Data Management System 157

Climate Data Markup Language (CDML)

Thelength of adomain element isthe number of axis pointsfor which data
can beretrieved. The partition_length isthe number of points for which
datais actually defined. If datais missing, thisisless than the length.

10.vari abl e-el ement ::= <variable variable-attributes>
vari abl e-content </vari abl e>

11. vari abl e-content ::= variabl e-donain extra-attri bute-
el enent *

12.vari abl e-domai n :: = <domai n> donai n-el ement* </
donai n>

13. donmi n- el enent ::= <donEl em nanme="axi s- nane”

start="Integer” |ength="Integer”
partition_Il ength="Integer”/>

Table 6.6 Variable Attributes

Requi

Attribute red? CF GDT Notes

id Y N N Variable identifier. Also, the name
of the variable in the underlying
file(s), if name_in_fileis unde-
fined.

add offset N Y Y Additive offset for packing data.
See scale factor.

associate N N Y IDs of variables containing aterna-
tive sets of coordinates

axis N N Y Spatio-temporal dimensions.

Ex: “TY X" for avariable with
domain (time, latitude, longitude)

Note: for CF, applies to axes only.

cell_methods N Y N The method used to derive data
that represents cell values, e.g.,

“maximum”, “mean”, “variance”,
etc.
comments N N N Comment string

158 Climate Data Management System

CDML Syntax

Table 6.6 Variable Attributes

Attribute
coordinates

datatype

grid_name

grid_type

long_name

missing_value

name_in_file

scale factor

standard_name

subgrid

template

units
valid_max
vaid_min

valid_range

Requi
red?

N

Y

Zz Z2 Z2 Z2

CF

< < < =<

GDT

< < < <

Notes

IDs of variables containing coordi-
nate data.

Char, Short, Long, Float, Double,
or String

Id of the grid

“gaussian” | “uniform” |
“equalared’ | “generic”

Long description of a physical
guantity.

Value used for data that are
unknown or missint.

Name of the variable in the under-
lying file(s). Seeid.
Multiplicative factor for packing
data. See add_offset.

Reference to an entry in the stan-
dard name table.

Records how data val ues represent
subgrid variation.

Name of thefiletemplateto usefor
this variable. Overrides the dataset
value.

Units of a physical quantity.
Largest valid value of avariable
Smallest valid value of avariable

Largest and smallest valid values
of avariable

Climate Data Management System

159

Climate Data Markup Language (CDML)

6.6.6 Attribute Element

Attributes which are not explicitly defined by the GDT convention are rep-
resented as extra attribute elements. Any dataset, axis, grid, or variable ele-
ment can have an extra attribute as part of its content. This representationis
also useful if the attribute value has non-blank whitespace characters (car-
riage returns, tabs, linefeeds) which are significant.

The datatype is one of: Char, Short, Long, Float, Double, or String.

14.extra-attri bute-el enment ::= <attr nane=attri bute-nane
dat at ype="attri but e-datatype”> attri bute-val ue </
attr>

6.7 A Sample CDML Document

Dataset ‘sample’ has two variables, and six axes.

Note:

e Thefileisindented for readability. Thisis not required; the added whitespaceis
ignored.

¢ The dataset contains three axes and two variables. Variables u and v are func-
tions of time, latitude, and longitude.

* Theglobal attribute cdms_filemap describes the mapping between variables and
files. Theentry[[u],[[O, 1,-,-,u_2000.nc],[1,2,-,-,u_2001.nc],[2,3,-
, -, u_2002. nc]] indicatesthat variable uiscontained in file u_2000.nc for time
index 0, u_2001.nc for timeindex 1, etc.

<?xm version="1.0""?>
<?xm version="1.0"?>
<! DOCTYPE dat aset SYSTEM "http://ww-pcndi.|Inl.gov/software/cdns/cdni.dtd">
<dat aset
Convent i ons="CF- 1. 0"
id ="sanple"
cal endar ="gregori an"
directory=""
cdms_filemap="[[[u],[[O,1,-,-,u_2000.nc],[1,2,-,-,u_2001.nc],[2,3,-,-
,u_2002.nc]]11,[[v],[[O,1,-,-,v_2000.nc],[1,2,-,-,v_2001.nc],[2,3,-,-
,v_2002.nc]]1]"
hi story="
[2002-1-7 18:21:41] /idoru/cdat/3.1/bin/cdscan -d sanple -x sanpl e. xml u_2000. nc

160

Climate Data Management System

A Sample CDML Document

u_2001. nc u_2002.nc v_2000.nc v_2001. nc v_2002.nc"

>
<axi s
id ="latitude"
| engt h="16"
uni t s="degrees_north"
dat at ype="Doubl e"
>
[-90. -78. -66. -54. -42. -30. -18. -6. 6. 18. 30. 42. 54. 66.
78.
90.]
</ axi s>
<axis
id ="longitude"
| engt h="32"
uni t s="degrees_east"
dat at ype="Doubl e"
>
[0. 11.25 22.5 33.75 45, 56.25 67.5 78.75 90.
101.25 112.5 123.75 135. 146.25 157.5 168.75 180. 191. 25
202.5 213.75 225. 236.25 247.5 258.75 270. 281.25 292.5
303.75 315. 326.25 337.5 348.75]
</ axi s>
<axi s
id ="tine"
partition="[0 1 12 2 3]"
cal endar ="gr egori an"
uni t s="days since 2000-1-1"
dat at ype="Doubl e"
| engt h="3"
nane_in_file="tine"
>
[0. 366. 731.]
</ axi s>
<variabl e
id ="u"
m ssi ng_val ue="-99. 9"
uni ts="ms"
dat at ype="Doubl e"
>
<domai n
>
<donEl em name="ti me" | ength="3" start="0"/>
<donEl em nane="1ati tude" |ength="16" start="0"/>
<donEl em nane="1ongi tude" |ength="32" start="0"/>
</ donai n>
</ vari abl e>
<variabl e
id ="v"
m ssi ng_val ue="-99. 9"
uni ts="ms"

dat at ype="Doubl e"
>

<domai n
>
<donEl em name="ti me" |ength="3" start="0"/>
<donEl em nane="1ati tude" |ength="16" start="0"/>
<donEl em name="1 ongi tude" | engt h="32" start="0"/>
</ domai n>

</ vari abl e>

</ dat aset >

Climate Data Management System 161

Climate Data Markup Language (CDML)

162 Climate Data Management System

CHAPTER 7

CDMSUtilities

7.1 cdscan: Importing datasets into CDMS

711 Overview

A dataset is a partitioned collection of files. To create a dataset, the
files must be scanned to produce atext representation of the dataset. CDM S
represents datasets as an XML metafile in the CDML markup language.
Thefile contains all metadata, together with information describing how the
dataset is partitioned into files. (Note: CDM S provides adirect interface to
individual filesaswell. It is not necessary to scan anindividual filein order
to accessit.)

For CDMS applications to work correctly, it isimportant that the CDML
metafile be valid. The cdscan utility generates a metafile from a collection
of datafiles.

CDM S assumes that there is some regularity in how datasets are partitioned:

e A variable can be partitioned (split acrossfiles) in a most two dimensions. The
partitioned dimension(s) must be either time or vertical level dimensions; vari-
ables may not be partitioned across longitude or |atitude. Datasets can be parti-

Climate Data Management System 163

CDMS Utilities

tioned by variable as well. For example, one set of files might contain heat
fluxes, while another set contains wind speeds.

Otherwise, there is considerable flexibility in how a dataset can be parti-
tioned:

¢ Filescan contain asingle variable or al variables in the dataset.
e Thetime axis can have gaps.

* Horizontal grid boundary information and related information can be duplicated
acrossfiles.

e Variables can be on different grids.

* Filesmay bein any of the self-describing formats supported by CDMS, includ-
ing netCDF, HDF, GrADS/GRIB, DRS, and UK Met Office PP format.

7.1.2 cdscan Syntax
The syntax of the cdscan command is

cdscan [optiong] filel file2 ...

or

cdscan [optiong] -f file_list

where

o filelfile2..isablank-separated list of filesto scan

» file_lististhe name of afile containing alist of files to scan, one pathname per
line.

Output iswritten to standard output by default. Use the -x option to specify
an output filename.

164

Climate Data Management System

cdscan: Importing datasets into CDMS

Table 7.1 cdscan command options

Option Description

-adlias file Change variable namesto the aliases defined in an aliasfile.
Each line of the alias file consists of two blank separated
fields: variable_id alias.variable_idisthelD of the
variablein thefile, and al i as isthe name that will be sub-
stituted for it in the output dataset. Only variables with
entriesin the alias file are renamed.

-c calendar Specify the dataset calendar attribute. One of "gr egori an"
(default), "j ul i an", "nol eap”, “prol eptic_gregorian”,
“standard”, Or "360_day".

-d dataset_id String identifier of the dataset. Should not contain blanks or
non-printing characters. Default: "none"

-e newattr Add or modify attributes of afile, variable, or axis. The
form of newattr is either:
var.attr = val ue
to modify avariable or attribute, or
.attr = val ue
to modify aglobal (file) attribute. In either case, val ue may
be quoted to preserve spaces or force the attribute to be
treated as a string. If val ue is not quoted and the first char-
acter isadigit, it is converted to integer or floating-point.

This option does not modify the input datafiles. See notes
and exampl es bel ow.

--exclude Exclude specified variables. The argument is a comma-sep-
var,var,... arated list of variables containing no blanks.

Also see --include.

Climate Data Management System 165

CDMS Utilities

Table 7.1 cdscan command options

Option Description

--exclude-file Exclude files with a basename matching the regular expres-

pattern sion pattern. In contrast to --exclude, this skipsthe file
entirely. Multiple patterns may be listed by separating with
vertical bars (e.g. abc|def). Note that the match isto the ini-
tial part of the basename. For example, the pattern 'st'
matches any basename starting with 'st'.

-f file_list File containing alist of absolute data file names, one per
line.

-h Print a help message.

-i time_delta Causes the time dimension to be represented as linear, pro-
ducing a more compact representation. Thisis useful if the
time dimension isvery long. time_delta isafloat or integer.
For example, if the time deltais 6 hours, and the reference
unitsare ‘hours since xxxx' , Set thetime deltato 6. See
the -r option. See Note 2.

--ignore-open- Ignore open errors. Print a warning and continue.

error

--include Only include specified variables in the output. The argu-

var,var,... ment is a comma-separated list of variables containing no
blanks.

Also see --exclude.

--include-file Only include files with a basename matching the regular

pattern expression pattern. In contrast to --include, this skips files

entirely if they do not match the pattern. Multiple patterns
may be listed by separating with vertical bars (e.g. abcl|def).
Note that the match isto theinitial part of the basename. For
exampl e, the pattern 'st' matches any basename starting with
'st'.

166

Climate Data Management System

cdscan: Importing datasets into CDMS

Table 7.1 cdscan command options

Option

g/

Description

scan time as a vector dimension. Time values are listed indi-
vidually. Turns off the -i option. The time dimension must
be monotonic; the scanned time dimension will have no

gaps.

-l levels

Specify that the files are partitioned by vertical level. That
is, datafor different vertical levels may appear in different
files. levelsis a comma-separated list of levels containing
no blanks. See Note 3.

-m levelid

name of the vertical level dimension. The default is the ver-
tical dimension as determined by CDMS. See Note 3.

--notrim-lat

Don't trim latitude values (in degrees) to the range [-90..90].
By default latitude values are trimmed.

-p template

Add afile template string, for compatibility with pre-V 3.0
datasets. ' cdimport -h’ describes template strings.

-q

Quiet mode.

-r time_units

time units of theform "uni ts since yyyy-nmm dd
hh: mi : ss", where unitsisone of "year", "nonth",
"day", "hour", "m nute", "second".

-ssuffix file

Append a suffix to variable names, depending on the direc-
tory containing the datafile. Thiscan be used to distinguish
variables having the same name but generated by different
models or ensemble runs. 'suffix_file' is the name of afile
describing a mapping between directories and suffixes.
Each line consists of two blank-separated fields: di rec-
tory suffix. Eachfile path is compared to the directories
in the suffix file. If the file path isin that directory or a sub-
directory, the corresponding suffix is appended to the vari-
ableDsinthefile. If more than one such directory isfound,
the first directory found is used. If no match is made, the
variable ids are not altered. Regular expressions can be
used: see the example in the Notes section.

Climate Data Management System 167

CDMS Utilities

Table 7.1 cdscan command options

Option Description

-t timeid id of the partitioned time dimension. The default isthe name
of thetimedimension asdetermined by CDM S. SeeNote 1.

--time-linear Override the time dimensions(s) with alinear time dimen-
tzero,delta,unit sion. The arguments are comma-separated list:
9] ,calendar]

e zeroistheinitial time point, afloating-point value.
* detaisthetime delta, floating-point.
* unitsare time units as specified in the [-r] option.

e calendar isoptional, andis specified asin the[-c] option.
If omitted, it defaults to the value specified by [-c], oth-
erwise as specified in thefile.

Example: --time-linear '0, 1, nonths since

1980, nol eap'
--var-locate Only scan avariableif the basename of the file matches the
‘var file_patter pattern. This may be used to resolve duplicate variable
n errors. var and file_pattern are separated by a comma, with
no blanks.

var isthe name of the variable. file_patternisaregular
expression following the Python re modul e syntax.

Example: to scan variable ps from files starting with the

string 'ps_":
--var-locate 'ps,ps_.*'
-x xmifile Output file name. By default, output is written to standard
output.

Notes:

1. Filescan bein netCDF, GrADS/GRIB, HDF, or DRS format, and can be listed
in any order. Most commonly, the files are the result of a single experiment, and
the 'partitioned’ dimension istime. The time dimension of avariableisthe
coordinate variable having a name that starts with 'time’ or having an attribute
axis="T'. If thisis not the case, specify the time dimension with the -t option.

168 Climate Data Management System

cdscan: Importing datasets into CDMS

The time dimension should be in the form supported by cdtime. If thisis not the
case (or to override them) use the -r option.

2. By default, the time values are listed explicitly in the output XML. This can
cause aproblem if the time dimension is very long, say for 6-hourly data. To
handle this the form 'cdscan -i delta <files>' may be used. This generates a
compact time representation of the form <start, length, delta>. An exception is
raised if the time dimension for agiven fileis not linear.

3. Another form of the command is’ cdscan -I levl,lev2,..levn <files>'. This
asserts that the dataset is partitioned in both time and vertical level dimensions.
The level dimension of avariableisthe dimension having a name that starts
with "lev", or having an attribute "axis=Z". If thisis not the case, set the level
name with the -m option.

4. Anexample of asuffix file:

/ exp/ pr/ncar-a _ncar-a

| exp/ pr/ecma _ecma
/exp/talncar-a _ncar-a
| exp/talecma _ecma

For al filesin directory /exp/pr/ncar-a or a subdirectory, the corresponding vari-
ableidswill be appended with the suffix ' _ncar-a’. Regular expressions can be
used, as defined in the Python 're’ module. For example, The previous example
can be replaced with the single line:

fexp/ [M]*1([~]*) _\g<l>
Note the use of parenthesesto delimit a group. The syntax \g<n> refersto the n-

th group matched in the regular expression, with the first group being n=1. The
string [/]* matches any sequence of characters other than aforward slash.

5. Adding or modifying attributes with the -e option:
tine.units = "days since 1979-1-1"
sets the units of all variables/axesto "days since 1979-1-1". Note that since this
is done before any other processing is done, it allows overriding of non-
COARDS time units.

. newat t r =newal ue

Set the global file attribute 'newattr' to 'newvalue'.

Climate Data Management System 169

CDMS Utilities

6. The[--time-linear] option overrides the time values in the file(s). The resulting

dimension does not have any gaps. In contrast, the [-i], [-r] options use the spec-
ified time units (from[-r]), and calendar from [-c] if specified, to convert thefile
times to the new units. The resulting linear dimension may have gaps.

In either case, the files are ordered by the time valuesin the files.

The[--time-linear] option should be used with caution, asit is applied to all the
time dimensions found.

7.1.3 Examples

cdscan -c noleap -d test -x test.xm [uv]*.nc
cdscan -d pcndi _6h -i 0.25 -r 'days since 1979-1-1" *6h*.ctl

714 FileFormats
Data may be represented in avariety of self-describing binary file for-

mats, including

netCDF, the Unidata Network Common Data Format
HDF, the NCSA Hierarchical Data Format

GrADS/GRIB, WMO GRIB plus aGrADS control file (.ctl)
The first non-comment line of the control file must be a dset specification.

DRS, the PCMDI legacy format.
UK Met Office PP format

7.1.5 NameAliasing
A problem can occur if variablesin different files are defined on dif-

ferent grids. What if the axis names are the same? CDMS requires that
within adataset, axis and variable |Ds (names) be unique. What should the
longitude axes be named in CDMS to ensure uniqueness? The answer isto
allow CDMS IDsto differ from file names.

If avariable or axis hasa CDMS ID which differs from its name in thefile,
it is said to have an alias. The actual name of the object in thefileis stored
in the attribute name_in_file. cdscan uses this mechanism (with the-aand -

170

Climate Data Management System

cdscan: Importing datasets into CDMS

s options) to resolve name conflicts; anew axis or variable ID is generated,
and the name_in_fileis set to the axis name in thefile.

Name aliases also can be used to enforce naming standards. For data
received from an outside organization, variable names may not be recog-
nized by existing applications. Often it issimpler and safer to add an aliasto
the metafile rather than rewrite the data.

Climate Data Management System 171

CDMS Utilities

172 Climate Data Management System

APPENDIX A

CDMSClasss

Figure 1, “CDMS Classes,” on page 175 illustrates the class inherit-
ance structure of CDMS. The classes may be categorized as abstract or con-
crete. Only concrete classes are meant to be used directly. In contrast an
abstract class defines the common interface of its subclasses. For example,
the class AbstractAxis2D defines the common interface for two-dimen-
sional coordinate axes. It has concrete subclasses DatasetAxis2D,
FileAxis2D, and TransientAxis2D, which are used in applications. Abstract
classes are denoted in italics.

For many abstract classes there are three ‘flavors' of subclass. dataset, file,
and transient. Dataset-related objects are thought of as being contained in
datasetsin the sense that operations on those objectsresult in |/O operations
on the corresponding dataset. The same is true of file-related objects.
Objectsin datasets and files are examples of persistent objects, whose state
persists after the application exits. On the other hand, transient objects live
in memory and are not persistent.

In general the concrete subclasses closely mirror the interface of the abstract
parent class. For this reason this document defines the interfaces of the
abstract classes, and only discusses a concrete classin the few cases where

Climate Data Management System 173

CDMS Classes

the interface has been extended. This allows applications to treat the behav-
ior of, say a dataset axis and file axis, as identical.

174 Climate Data Management System

[MAMaskadArray | Colms(hb j

ih i
[AbstractV ariabie | [Abstractaxis || AbstraciCoordinateduis | | AbstractGrid | CdmsFile
— L & L | Datasat |
| AbstractRectGrid | | AbstractHoriportaiGrid |
| | | AbstractDatabase
| AbstractCurveGrid | | AbstroctGenenicGrid |
‘5—‘ A—l LDAPDatabass
TransientVariable | Datasathxis | DatasePRectGrd | | DataseiCurveGrid | | DatasetGenericGrid |
Fils Axis | FilsRectGrid | | FileCurveGrid | | FileGenaricGrid |
| TransientAxis | | TransientRectGrid | | TranslentCurveGrid | | TransientGenercGrd |
| DatasatVariable
L
| Abstractfuxdis! D AbstractAuiz2D |
DatasetBuxAxisiD	Datasatfxis?D
FileAuxAxis1D	FileAxiszD
TranslentAuxAxisiD	TransientfxiszD

FIGURE 1. CDM S Classes

APPENDIX B \erson Notes

B.1 \Version5.0

CDMS Version 5.0 is based on the NumPy scientific computing pack-
age. See the transition guide for information on converting scripts to this
version.

1. The modules cdms2, regrid2, and MV 2 are based on NumPy.

2. The modules cdms, regrid, and MV are deprecated. They will beretained in
CDMSfor aninterim period to facilitate conversion, on 32-hit architectures
only.

3. The NumPy-based modules work correctly on the 64-bit x86_64 and ia64 archi-
tectures.

B.2 Version 4.0

CDMS version 4.0 adds support for nonrectangular grids:

1. Thefollowing grid classes were added: AbstractHorizontal Grid, AbstractCurve-
Grid, AbstractGenericGrid, DatasetCurveGrid, FileCurveGrid, TransientCurve-
Grid, DatasetGenericGrid, FileGenericGrid, and TransientGenericGrid.

Climate Data Management System 176

Version Notes

The following axis classes were added: AbstractCoordinateAxis,
AbstractAuxAxislD, AbstractAxis2D, DatasetAuxAxislD, FileAuxAxislD,
TransientAuxAxislD, DatasetAxis2D, FileAxis2D, and TransientAxis2D.

3. The getMesh and clone methods were added for grids.

An interface to the SCRIP package was added.

B.3 \Version 3.0 Overview

CDMSversion 3.0 isasignificant enhancement of previousversions.

The mgjor changes were:

1.

CDAT/CDMS was integrated with the Numerical Python masked array class
MA .MaskedVariable. The MV submodule was added as a wrapper around MA.

Methods that read data, such as subRegion, subSlice, and the slice operations,
return instances of class TransientVariable. The plot and regrid modules were
modified to handle masked array input. The specifierstime=..., latitude=..., etc.
were added to the 1/0 routines.

3. Theclass TransientVariable was added.

A number of new functions were added, notably subRegion and subSlice, which
return instances of TransientVariable.

When a masked array is returned from amethod, it is“ squeezed”: singleton
dimensions are removed. In contrast, transient variables are not squeezed. 1/0
functions have a squeeze option. The method setA utoReshapeM ode was
removed.

Internal attributes are handled in the Internal Attributes class. This alows
CDMS classes to be subclassed more readily.

The class Variable was renamed DatasetVariable.
The cu module was emulated in cdms. cu and cdms methods can be mixed.

The code was modularized, so that Python, CDMS, and Numerical Python can
be built and installed separately. This significantly enhances the portability of
the code.

177

Climate Data Management System

V3.0 Details

B.4 V3.0 Details

B.4.1 AbsractVariable
¢ Functions getDomain, getSlice, rank, regrid, setMissing, size, subRegion, and
subSlice were added.

* Thefunctions getRegion, getSlice, getValue, and the slice operatorsall return an
instance of MA, a masked array. Singleton dimensions are squeezed.

¢ The functions subRegion and subSlice return an instance of TransientVariable.
Singleton dimensions are not squeezed.

¢ The xxSlice and xxRegion functions have keywords time, level, latitude, and
longitude.

¢ Theinput functions have the keyword squeeze.

e AbstractVariable inherits from class Slab. The following functions previously
available in module cu are Slab methods: getattribute, setattribute, listdimat-
tributes, getdimattribute, listall, and info.

e AbstractVariable implements arithmetic functions, astype.
* Thewrite function was added.

B.4.2 AbstractAxis

e The functions asComponentTime, asRelativeTime, clone, getAxislds, getAxis-
Index, getAxisList, getAxisListindex, maplnterval Ext were added.

¢ subaxis was renamed subAxis for consistency.

* Generalized wraparound wasimplemented, to handle multiple cycles, reversing,
and negative strides. By default, coordinate intervals are closed. The intersec-
tion options‘n’,’e",'b’,and 's' were added to the interval indicator - see map-
Interval Ext.

B.4.3 AbstractDatabase

¢ The function open is synonymous with openDataset.

B.44 Dataset

¢ Thefunction open is synonymous with openDataset.

Climate Data Management System 178

Version Notes

B.45 cdmsmodule

The functions asVariable, isVariable, and createVariable were added.

The function setAutoReshapeM ode was removed. It is replaced by the squeeze
option for all I/O functions.

B.46 CdmsFile

The function createVariable has a keyword fill_value. The datatype may be a
Numeric/MA typecode.

The function write was added.

B.4.7 CDMSError

All errors are an instance of the class CDM SError.

B.48 AbsractRectGrid
The function createGaussianGrid was added.

B.4.9 Internal Attributes

The class Internal Attributes was added. It has methods add_internal_attribute,
is internal_attribute, and replace_external_attributes.

B.4.10 TransientVariable

The class TransientVariable was added. It inherits from both AbstractVariable
and MA.

The cdms module function createVariable returns a transient variable.
This class does not implement the functions getPaths or getTemplate.

B411 MV
The MV submodule of cdms was added.

179

Climate Data Management System

APPENDIX C

cu Module

The cu moduleisthe original CDAT 1/O interface. As of version 3 it
is emulated in the cdms module. It is maintained for backward compatibil-

ity.

The cu classes are Slab, corresponding to TransientVariablein CDMS, and
cuDataset, corresponding to Dataset in CDMS.

C.1 Sab

Climate Data Management System 180

cu Module

Table C.1 Slab Methods

Type Definition

Various getattribute(name)
Get the value of an attribute.
nameis the string name of the attribute. The following special
names can always be used: ‘filename’, ‘ comments’,
‘grid_name’, ‘grid_type', ‘time_statistic’, ‘long_name’,
‘units'.

Various getdimattribute(dim, field)
Get the value of adimension attribute.
dimisthe dimension number, an integer in the range O..rank-1.
field isastring, one of: "name", "values', "length", "units",
"weights', "bounds".

None info(flag=None, device=sys.stdout)
Print slab information.
If flag is nonzero, dimension values, weights, and bounds are
aso printed.
Output is sent to device.

List listall(all=None)

Print slab information.

If all is nonzero, dimension values, weights, and bounds are
aso printed.

181

Climate Data Management System

cuDataset

Table C.1 Slab Methods

Type Definition

List listdimattributes(dim, field)
List dimension attributes.

Returns alist of string attribute names which can be input to
getdimattribute.

dim is the dimension number, an integer in the range 0..rank-1.

field isastring, one of: "name", "values', "length”, "units",
"weights’, "bounds".

None setattribute(name, value)
Set an attribute.
name s the string name of the attribute.
value is the value of the attribute.

C.2 cuDataset

Table C.2 cuDataset Methods

Type Definition

None clear default()
Clear the default variable name.

None default_variable(vname)
Set the default variable name.
vname is the string variable name.

Climate Data Management System 182

cu Module

Table C.2 cuDataset Methods

Type

Array

Definition
dimensionarray(dname, vname=None)
Values of the axis named dname.

dname is the string axis name.

vname is the string variable name. The default is the variable
name set by default_variable.

AXis

dimensionobject(dname, vname=None)
Get an axis.
dname is the string name of an axis.

vname is a string variable name. The default is the variable
name set by default_variable.

Various

getattribute (vname, attribute)
Get an attribute value.

vname is a string variable name.
attributeis the string attribute name.

String

getdimensionunits (dname,vname=None)
Get the units for the given dimension.
dname is the string name of an axis.

vname is a string variable name. The default is the variable
name set by default_variable.

Various

getglobal (attribute)
Get the value of the global attribute.
attributeis the string attribute name.

183

Climate Data Management System

cuDataset

Table C.2 cuDataset Methods

Type

Variable

Definition
getslab (vname, *ar gs)
Read datafor avariable.

vname is the string name of the variable.

argsisan argument list corresponding to the dimensions of the
variable. Arguments for each dimension can be:

(1) “:’ or None -- select the entire dimension

(2) Ellipsis -- select entire dimensions between the ones given.
(3) apair of successive arguments giving an interval in world
coordinates.

(4) aCDMS-style tuple of world coordinates e.g. (start, stop,
. CC!)

List

listall (vname=None, all=None)
Get info about data from the file.
vname is the string name of the variable.

If all is non-zero, dimension values, weights, and bounds are
returned as well.

List

listattribute (vhame=None)

Return alist of attribute names.

vname is the name of the variable. The default is the variable
name set by default_variable.

List

listdimension (vname=None)

Return alist of the dimension names associated with a vari-
able.

vname is the name of the variable. The default is the variable
name set by default_variable.

List

listglobal ()
Return alist of the global attribute names.

Climate Data Management System 184

cu Module

Table C.2 cuDataset Methods

Type

List

Definition
listvariable ()
Return alist of the variables in thefile.

None

showall (vname=None, all=None, device=sys.stdout)
Print a description of the variable.
vname is the string name of the variable.

If all is non-zero, dimension values, weights, and bounds are
returned as well.

Output is sent to device.

None

showattribute (vname=None, device=sys.stdout)
Print the attributes of avariable.

vname is the string name of the variable.

Output is sent to device.

None

showdimension (vhame=None, device=sys.stdout)
Print the dimension names associated with a variable.
vname is the string name of the variable.

Output is sent to device.

None

showglobal (device=sys.stdout)
Print the global file attributes.
Output is sent to device.

None

showvariable (device=sys.stdout)
Print the list of variablesin thefile.

185

Climate Data Management System

APPENDIX D

\Verson 5 Trangtion
Guide

The major change in version 5 is the transition from the Numeric sci-
entific computing package to the NumPy package (http://numpy.scipy.org).
NumPy isafull replacement and enhancement of Numeric, whichisno
longer supported. Since many of the CDMS array objects, such as Variables
and Axes, are extensions of the Numeric array, this transition is nontrivial.
Fortunately NumPy is very similar to Numeric. In many casesasimple
change of module name will be sufficient to update a script. This section
details the differences between versions 4 and 5 and the steps necessary to
take advantage of the new package.

D.1 Namespace changes

In CDMS Version 5 the cdms2 module interfaces to numpy and
numpy.core.ma (the replacement for MA). For an interim period, the
cdms, MA and Numeric modules will be retained for backward compati-
bility, but are deprecated. The change of namespace reflects the fact that the
array objects are fundamentally different, and in certain instances behave

Climate Data Management System 186

Version 5 Transition Guide

differently. Also, MV isnow MV2, cdms2.MV isan aliasfor cdms2.MV 2,
and regrid is changed to regrid2. The following table summarizes these
namespace changes for the affected CDAT modules:

Table D.1

Version 4 Version 5 Compatibility module
cdms cdms2 cdms

MV MV2 MV

regrid regrid2 regrid

Numeric numpy numpy.oldnumeric
MA numpy.corema numpy.oldnumeric.ma
vCs VCS -

cdutil cdutil -

genutil genutil -

4.2 Converting scripts with convertcdms.py

Fortunately the changes needed to convert from cdms/Numeric to
cdms2/NumPy are relatively few and can mostly be automated. The script
convertcdms.py isinstalled in the bin directory. It scans a Python script or
directory and makes the following changes:

1. import cdms => import cdms2 as cdms

2. import regrid => import regrid2 as regrid

3. import MV =>import MV2 as MV

4. import Numeric => import numpy.oldnumeric as Numeric
5. import MA =>import numpy.oldnumeric.maas MA

6. import cdms.MV => import cdms2.MV2

.

. from cdms import XX => from cdms2 import XX (similarly for regrid, MV,
MA, and Numeric)

187

Climate Data Management System

Converting scripts with convertcdms.py

8. from cdms. XX import YY => from cdms2.XX import YY (similarly for regrid,
MV, MA, and Numeric)

9. import cdmsas XX =>import cdms2 as XX (similarly for regrid, MV, MA, and
Numeric)

10. import cdms. XX => import cdms2.XX (similarly for regrid, MV, MA, and
Numeric)

import XX, cdms, YY => import XX, cdms2 ascdms, YY (similarly for regrid,
MV, MA, and Numeric)

11. MA.Float => Numeric.Float, similarly for MA.Int, MA.NewAXis

12. MA.Numeric => Numeric

13. The 'typecode=" argument in MA and MV functions is changed to 'dtype='
14. XX.mask() => XX.mask

15. XX.mask is None => ((XX.mask is None) or (XX.mask is MV 2.nomask))

16. A keyword argument 'axis=0' is added to MA.sum, MA .average, MA.product,
and MA .repeat

17. Thetranglationsin numpy.oldnumeric.alter_codel. This moduleis used for
most Numeric and MA-related translations. alter _codel methods do not have to
be executed separately. See the sample chapters of “ Guide to NumPy” at http://
numpy.scipy.org .

18. array.typecode() => arr.dtype.char

19. array.size() => arr.size

20. array.mask() => arr.mask

21. Some typecode characters haved changed. For example, ‘s =>‘h’.

To run convertcdms.py:

convertcdns. py foo.py
savestheoriginal fileinfoo.orig (if transations are made) and convertsthe
script.

convertcdnms. py -r directory

converts all Python and C source code in the directory, and recursively in
subdirectories.

convertcdns. py -h

Climate Data Management System 188

Version 5 Transition Guide

shows all options.

Some of the changes in NumPy must be made by hand:

1. Slicing asingleton value from an array returns a scalar, not a 0-D array. Such

scalars have a shape but no length.

2. Totest for the type of ascalar extracted from an array, use isinstance instead of

type().

3. Masked arraysreturn a special nomask object instead of None when thereisno
mask on the array. This appliesto getmask() and the array.mask attribute.

4. Masked array functions have a default axis of None, meaning ravel. The default

in previous versions was axis=0.

5. The default datatype in numpy/ma/cdms2 isfloat. In Numeric/MA/cdmsit

was int.

These differences areillustrated in the following table:

Table D.2

Note Numeric/MA/cdms

1 >>> import MV
>>> x = MV.arange(12.)
>>> X[0]

array(0.0)

numpy/ma/cdms2

>>> import MV 2

>>>y = MV2.arange(12.)
>>>y[0]

0.0

>>>type(y[0])

<type 'float'>

>>> cdms2.setNumericCompatibil-
ity(True)

>>> y[0]
array(0.0)

189

Climate Data Management System

Converting scripts with convertcdms.py

Table D.2
Note Numeric/MA/cdms numpy/ma/cdms2
2 >>> xnum = >>> ynum = numpy.arange(12.)
Numeric.arange(12.) >>> type(ynum[0])
>>> type(xnum[0]) <type 'numpy.float64'>
<type 'float™> >>> type(ynum[0]) is Float Type
>>> type(xnum([0]) is Float- False
Type .
>>> jsinstance(ynum[0], Float-
True Type)
True
3 >>> import MA >>> import numpy.core.ma as ma
>>> xma= MA.arange(12.) >>>yma= ma.arange(12.)
>>> xma.mask() is None >>> yma.mask is None
True Fase
>>> yma.mask is ma.nomask
True
4 >>> x = MV.ones((3,4)) >>>y = MV2.0nes((3,4))
>>> MV.sum(x) >>> MV 2.sum(y)
variable 6 array(12)
array([3,3,3,3)]) >>> MV 2.sum(y, axis=0)
array([3 33 3])
>>> cdms2.setNumericCompati bil-
ity(True)
>>> MV 2.sum(y)
array([3 33 3])
5 >>> MV.ones(12).typecode() >>> MV 2.0nes(12).typecode()

|d|

Climate Data Management System

190

Version 5 Transition Guide

191 Climate Data Management System

Index

A
arange 74
argsort 76
arrayrange 74
asarray 76
asComponentTime 48
asRelativeTime 48
assignValue
axis 44
variable 92
astype 92
asVariable 31
AUuxAXxislD 42
average 76
AXis 41
Axis2D 41

C
CDML
Climate Data Markup Language 147
element 148
identifier 150
tags 148
cdms module 31
CdmsFile
asadictionary 54
calling asafunction 53
cdscan 164
cdtime 111
choose 76
clone 44,81, 92
close 54
database 61
dataset 71
concatenate 76
connect 61
convertcdms.py 187
CoordinateAxis 41
copyAxis 54
copyGrid 54

Climate Data Management System 192

count 76
createAXxis

cdmsFile 43,55

dataset 42

transient 32, 42
createDataset 53
createEqualAreaAxis 32, 43
createGaussianAxis 32, 43
createGaussianGrid 32, 80
createGenericGrid 33, 81
createGlobalMeanGrid 33, 81
createRectGrid 81

cdmsFile 55, 80

dataset 80

transient 34, 80
createUniformGrid 35, 81
createUniformL atitudeAxis 35, 43
createUniformLongitudeAxis 36, 43
createVariable 36, 55, 90, 91
createVariableCopy 56
createZona Grid 35, 81
crossSectionRegrid 93
crossSectionRegridder 124
CurveGrid 79

D
database 58
Dataset
asadictionary 71
caling asafunction 71
designateCircular 49
designatel atitude 44
designatelevel 45
designatelongitude 45
designateTime 45
DRS 170

G

GenericGrid 79
getAutoBounds 36
getAxis 71, 81,93
getAxislds 93
getAxislndex 93
getAxisList 94

193

Climate Data Management System

getAxisListindex 94
getBounds

axis 46

grid 82
getCalendar 46
getDestinationArea 132
getDestinationFraction 132
getDomain 95
getGrid 72,95
getlnputGrid 132
getL atitude

grid 82

variable 95
getLevel 95
getLongitude

grid 82

variable 95
getMask 83
getMesh 83
getMissing 95
getObject 67
getOrder

grid 85

variable 96
getOutputGrid 133
getPaths

dataset 72

variable 96
getSourceArea 133
getSourceFraction 133
getTime 96
getType 85
getValue

axis 46
getVariable 72
getWeights 86
GRIB 170

H
HDF 170
Horizontal Grid 79

|
id 58

Climate Data Management System

194

isCircular 49
isLatitude 47
isLevel 47

isLinear 49
isLongitude 47
isMaskedVariable 77
isTime 48
isVariable 36

L

len 48, 66, 97
listDatasets 61

M

mapl nterval 49

mapl nterval Ext 50
masked array 74
masked equal 77
masked greater 77
masked greater_equal 77
masked less 77
masked less equal 77
masked not_equal 77
masked object 74
masked outside 77
masked values 75
masked where 77
maximum 77
minimum 78

N
name dias 170
netCDF 170

O

ones 75

open 62, 70

openDataset 37, 53, 62, 70
order string 96
order2index 37
orderparse 37
outerproduct 78

195 Climate Data Management System

P

plot method 142
power 78
pressureRegrid 97, 124
product 78

R

rank 97
readRegridder 126
readScripGrid 56, 72
RectGrid 79
regrid 98

regrid function 129
Regridder 125
relative name 58
repeat 78

reshape 75

resize 75

S
SCRIP regridder 131

bicubic 132
search result 66
search result entry 67
searchFilter 63
searchPredicate 66
set_default_fill_value 78
setAutoBounds 38
setAxis 98
setAxisList 98
setBounds

grid 83
setClassifyGrids 38
setMask 83
setMissing 98
setNumericCompatibility 39
setType 86
size 48,99
sort 78
subaxis 51
subGrid 87
subGridRegion 84
subRegion 99
subSlice 100

Climate Data Management System

196

sum 78

sync
cdmsFile 56
dataset 72

T
tag 58

take 78
toCurveGrid 85
toGenericGrid 85
transpose 79, 87

typecode
axis 48

variable 100

w

where 79

write 57
writeScripGrid 39

X
XML 147

Z
Zeros 75

197 Climate Data Management System

	Climate Data Management System Version 5.0
	Table of Contents
	CHAPTER 1 Introduction
	1.1 Overview
	1.2 Variables
	1.3 File I/O
	1.4 Coordinate Axes
	1.5 Attributes
	1.6 Masked values
	1.7 File Variables
	1.8 Dataset Variables
	1.9 Grids
	1.9.1 Example: a curvilinear grid
	1.9.2 Example: a generic grid

	1.10 Regridding
	1.10.1 CDMS Regridder
	1.10.2 SCRIP Regridder

	1.11 Time types
	1.12 Plotting data
	1.13 Databases

	CHAPTER 2 CDMS Python Application Programming Interface
	2.1 Overview
	Table 2.1 Python types used in CDMS

	2.2 A first example
	2.3 cdms2 module
	Table 2.2 cdms2 module functions
	Table 2.3 Class Tags

	2.4 CdmsObj
	Table 2.4 Attributes common to all CDMS objects
	Table 2.5 Getting and setting attributes

	2.5 CoordinateAxis
	Table 2.6 CoordinateAxis types
	Table 2.7 CoordinateAxis Internal Attributes
	Table 2.8 Axis Constructors
	Table 2.9 CoordinateAxis Methods
	Table 2.10 Axis Methods, additional to CoordinateAxis methods
	Table 2.11 Axis Slice Operators

	2.6 CdmsFile
	Table 2.12 CdmsFile Internal Attributes
	Table 2.13 CdmsFile Constructors
	Table 2.14 CdmsFile Methods
	Table 2.15 CDMS Datatypes

	2.7 Database
	2.7.1 Overview
	Table 2.16 Database Internal Attributes
	Table 2.17 Database Constructors
	Table 2.18 Database Methods

	2.7.2 Searching a database
	Table 2.19 SearchResult Methods
	Table 2.20 ResultEntry Attributes
	Table 2.21 ResultEntry Methods

	2.7.3 Accessing data
	2.7.4 Examples of database searches

	2.8 Dataset
	Table 2.22 Dataset Internal Attributes
	Table 2.23 Dataset Constructors
	Table 2.24 Open Modes
	Table 2.25 Dataset Methods

	2.9 MV2 module
	Table 2.26 Variable Constructors in module MV2
	Table 2.27 MV2 functions

	2.10 HorizontalGrid
	Table 2.28
	Table 2.29 HorizontalGrid Internal Attributes
	Table 2.30 RectGrid Constructors
	Table 2.31 HorizontalGrid Methods
	Table 2.32 RectGrid Methods, additional to HorizontalGrid Methods

	2.11 Variable
	Table 2.33 Variable Internal Attributes
	Table 2.34 Variable Constructors
	Table 2.35 Variable Methods
	Table 2.36 Variable Slice Operators
	Table 2.37 Index and Coordinate Intervals
	2.11.1 Selectors
	Table 2.38 Selector keywords

	2.11.2 Selector examples

	2.12 Examples

	CHAPTER 3 cdtime Module
	3.1 Time types
	3.2 Calendars
	3.3 Time Constructors
	Table 3.1 Time Constructors

	3.4 Relative Time
	Table 3.2 Relative Time Members

	3.5 Component Time
	Table 3.3 Component Time Members

	3.6 Time Methods
	Table 3.4 Time Methods

	CHAPTER 4 Regridding Data
	4.1 Overview
	4.1.1 CDMS horizontal regridder
	4.1.2 SCRIP horizontal regridder
	4.1.3 Pressure-level regridder
	4.1.4 Cross-section regridder

	4.2 regrid2 module
	4.2.1 CDMS horizontal regridder
	Table 4.1 CDMS Regridder Constructor

	4.2.2 SCRIP Regridder
	Table 4.2 SCRIP Regridder Constructor

	4.3 regridder functions
	4.3.1 CDMS regridder functions
	Table 4.3 CDMS Regridder function

	4.3.2 SCRIP Regridder functions
	Table 4.4 SCRIP Regridder functions

	4.4 Examples
	4.4.1 CDMS regridder
	4.4.2 SCRIP regridder

	CHAPTER 5 Plotting CDMS data in Python
	5.1 Overview
	5.2 Examples
	5.2.1 Example: plotting a gridded variable
	5.2.2 Example: using plot keywords.
	5.2.3 Example: plotting a time-latitude slice
	5.2.4 Example: plotting subsetted data

	5.3 plot method
	Table 5.1 plot keywords

	CHAPTER 6 Climate Data Markup Language (CDML)
	6.1 Introduction
	6.2 Elements
	Table 6.1 CDML Tags

	6.3 Special Characters
	Table 6.2 Special Character Encodings

	6.4 Identifiers
	6.5 CF Metadata Standard
	6.6 CDML Syntax
	6.6.1 Dataset Element
	Table 6.3 Dataset Attributes

	6.6.2 Axis Element
	Table 6.4 Axis Attributes

	6.6.3 partition attribute
	6.6.4 Grid Element
	Table 6.5 RectGrid Attributes

	6.6.5 Variable Element
	Table 6.6 Variable Attributes

	6.6.6 Attribute Element

	6.7 A Sample CDML Document

	CHAPTER 7 CDMS Utilities
	7.1 cdscan: Importing datasets into CDMS
	7.1.1 Overview
	7.1.2 cdscan Syntax
	Table 7.1 cdscan command options

	7.1.3 Examples
	7.1.4 File Formats
	7.1.5 Name Aliasing

	APPENDIX A CDMS Classes
	APPENDIX B Version Notes
	B.1 Version 5.0
	B.2 Version 4.0
	B.3 Version 3.0 Overview
	B.4 V3.0 Details
	B.4.1 AbstractVariable
	B.4.2 AbstractAxis
	B.4.3 AbstractDatabase
	B.4.4 Dataset
	B.4.5 cdms module
	B.4.6 CdmsFile
	B.4.7 CDMSError
	B.4.8 AbstractRectGrid
	B.4.9 InternalAttributes
	B.4.10 TransientVariable
	B.4.11 MV

	APPENDIX C cu Module
	C.1 Slab
	Table C.1 Slab Methods

	C.2 cuDataset
	Table C.2 cuDataset Methods

	APPENDIX D Version 5 Transition Guide
	D.1 Namespace changes
	Table D.1

	4.2 Converting scripts with convertcdms.py
	Table D.2

	Index

